* Required

1. 3 main types of learning *

You were introduced to 3 different learning strategies utilized by machine learning algorithms: unsupervised learning, supervised learning, and reinforcement learning. Match each type of learning to one of the goals below:

Mark only one oval per row.

	unsupervised	supervised	reinforcement
Learn how to optimally behave in your environment	\bigcirc	\bigcirc	\bigcirc
Discover patterns in your data	\bigcirc	\bigcirc	
Predict Y from X	\bigcirc	\bigcirc	\bigcirc

2. The main ML types also have subcategories... *

...match each subcategory to its main learning type.

5 points

Mark only one oval per row.

	Unsupervised Learning	Supervised Learning
Dimensionality Reduction	\bigcirc	\bigcirc
Clustering	\bigcirc	\bigcirc
Anomaly Detection	\bigcirc	\bigcirc
Regression	\bigcirc	\bigcirc
Classification	\bigcirc	\bigcirc

3 points

3. Assign each algorithm to one of these categories *

11 points

	Dimensionality Reduction	Anomaly Detection	Clustering	Features- based Supervised Learning Models	Similarity- based Supervised Learning Models
PCA	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
t-SNE	\bigcirc	\bigcirc	\bigcirc		
k-means	\bigcirc			\bigcirc	
DBSCAN	\bigcirc			\bigcirc	
gamma- index		\bigcirc	\bigcirc	\bigcirc	\bigcirc
linear / logistic regression			\bigcirc		
Decision Tree		\bigcirc		\bigcirc	
Random Forest		\bigcirc	\bigcirc	\bigcirc	
Neural Network		\bigcirc		\bigcirc	
k-nearest- neighbors		\bigcirc	\bigcirc	\bigcirc	\bigcirc
SVM (a kernel method)		\bigcirc	\bigcirc	\bigcirc	

Mark only one oval per row.

4. Data vs. Concept Drift *

We want to predict the price of a house from its size. Which of the scenarios results in either a data or a concept drift? Remember: Data Drift is when the input distribution changes, Concept Drift is when the input/output relation changes.

Mark only one oval per row.

	Data Drift	Concept Drift
Due to inflation, the same size house now costs 20% more than 5 years ago.		
On average, people built larger houses in 2020 than in 2010.	\bigcirc	

5. Over- and Underfitting *

2 points

A model's performance on new data points can be bad for two reasons: underfitting (= the model has a high bias) or overfitting (= high variance). Which is which?

Mark only one oval per row.

	underfitting	overfitting
When you evaluate the model on the data it was trained on, the performance is close to that of a human, but on new data points it performs poorly.		\bigcirc
No matter on what data (train or test) you evaluate the model, the performance is always far below that of a human.	\bigcirc	\bigcirc

6. Improving the performance *

Which of these actions can help if your model is either over- or underfitting?

Mark only one oval per row.

	underfitting	overfitting
try a more complex (non-linear) model	\bigcirc	\bigcirc
feature engineering	\bigcirc	
use regularization	\bigcirc	\bigcirc
get more data (samples)	\bigcirc	
feature selection	\bigcirc	

7. Machine learning is an "iterative" process, meaning that an AI team often 1 point has to try many ideas before arriving at a solution that's good enough, rather than have the first thing they try work. *

Mark only one oval.

\square)	True
\square)	False

8. Which of these are reasons that it's often unrealistic to expect an ML 1 point system to be 100% accurate? *

Mark only one oval.

- You might not have enough data
- Data can be mislabeled
- Data can be ambiguous
- All of the above

This content is neither created nor endorsed by Google.

