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Preface

This book is meant to empower researchers to code with con}dence and clarity.

If you studied something other than computer science—especially in the natural sciences like physics,
chemistry, or biology—it’s likely you were never taught how to properly develop software. Yet, you’re
often still expected to write code as part of your daily work. Maybe you’ve taken a programming
course like Python for Biologists and can put together functional scripts through trial and error (with
a little help from an AI assistant). But chances are, no one ever showed you how to write well-
structured, maintainable, and reusable code that could make your life—and collaborating with your
colleagues—so much easier.

This book is for you if you want to:

• Write functional software more quickly
• Use a structured approach to design better programs
• Reuse your code in future projects
• Feel con}dent about what your scripts are doing
• Prepare your research code for production
• Share your work with pride.

Whether you’re just beginning your scienti}c journey—perhaps working on your }rst major project
like a master’s thesis or your }rst paper—or you’re contemplating a move from academia to industry,
the practical advice in this book can guide you along the way. We will approach software design
from }rst principles and tackle research questions with a product mindset. While the book contains
some example code in Python to illustrate the concepts, the general ideas are independent of any
programming language.

Software development is a craft that’s best learned with the guidance of a senior colleague—someone
who can show you the right tools and provide feedback through code reviews. Unfortunately, mentors
with industry experience are rare in academia. While a book can’t replace an apprenticeship, I hope
this one gives you a head start. It’s the book I wish I could have read at university and the one I
always wanted to recommend to the students and junior developers I’ve mentored.

This is still a draft version! Please write me an email, if you have any suggestions for how this
book could be improved!

Enjoy! �
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Part I.

Gaining Clarity
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Before your start writing code, it is important to gain clarity on your concept and approach (Figure 1).
Speci}cally, in this }rst part of the book we’ll examine:

• The outcome we want to achieve, i.e., why we develop software in the }rst place (Chapter 1).
• What output creates the most value for our users (Chapter 2).
• What code generates this output and how do we get from working code to good code (Chapter 3).

Figure 1.: A developer writes code, which is then executed to generate some output that is consumed
by a user. Before you start writing this code, it is important to gain clarity on the why,
what, and how of your solution.
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1. Outcome: Why?

Before writing your }rst line of code, it’s crucial to clearly understand what you’re trying to achieve—
speci}cally, the purpose of your research. This helps you focus on developing an innovative solution
that creates real value by improving existing approaches or addressing unmet needs. Furthermore,
this clarity will help you choose the most appropriate analysis methods to support your objectives and
enable you to communicate your research ezectively to ensure your audience understands the bene}ts
of your work.

1.1. Why We Develop Software

While programming can be enjoyable in its own right, most people—and especially companies—aren’t
willing to invest signi}cant time or resources unless there’s a clear return. So why do we write code
in the }rst place?

Code vs. Software Product

Please note that there is a dizerence between code and a software product:

• Code is simply text written in a programming language (like Python).
• A software product is code that actually runs—either locally (on your laptop or phone)

or remotely (as a web service in the cloud)—and produces an output that users interact
with.

Sometimes that interaction with the program is the end goal (e.g., when playing a video game).
Other times, the software is just a means to an end—like a website you use to order clothes
online or the script you run to generate your research results (Figure 1.1).

Figure 1.1.: To become valuable, code needs to be executed and produce some kind of output for
a user. In this chapter we’ll examine why we write this code in the }rst place, i.e.,
what outcome we’re trying to achieve.
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1. Outcome: Why?

When it comes to serious software development, the motivation usually boils down to pro}t and/or
recognition.

Companies are usually looking to make a pro}t, which can be accomplished in one of two ways:

1. Increase revenue: The company builds a software product or feature that users are willing
to pay for, like a web application ozered as software-as-a-service (SaaS) with a monthly sub-
scription, or that results in customers spending more money, for example, because of better
recommendations on an e-commerce platform.

2. Reduce costs: Alternatively, companies might build internal tools that automate tedious or
repetitive tasks. By saving employee time, these tools reduce operational costs and indirectly
increase pro}t.

As an individual—especially in research—your primary goal is probably to get some recognition in
your }eld. For instance:

• You might write code to generate results that get your paper published in a respected journal
and cited by others.

• Or you might create an open-source library that becomes popular (and receives a lot of stars on
GitHub).

With a bit of luck, that recognition could also lead to pro}t, such as landing a well-paid job based on
a successful side project.

1.2. Commercial Software Outcome: Satis}ed Users

Whatever your motivation, success—whether }nancial or reputational—only comes if your software
meets a real need. In other words, it must create value for your users. Let’s }rst examine what
this means for commercial software applications.

Before developing a product, we need to understand our users and their priorities [1]. These
considerations are not only relevant for software, but apply to all kinds of products—physical and
digital—like a woodworking tool or an e-commerce website.

Ask yourself:

1. Who are your users?
Depending on the product, your target user group might be broad or highly speci}c. For example,
a general consumer product could be used by anyone over 14, while enterprise solutions may
cater to niche audiences, such as professionals in a particular }eld. Even if your users could
theoretically be “everyone,” picturing a more speci}c user can help re}ne your solution. Trying
to please everyone often results in satisfying no one. Focusing on a distinct user group can also
help dizerentiate your product in the market.

User experience (UX) designers often create user personas—}ctional but representative users
based on real-world insights. These personas include details like age, profession, hobbies, and
speci}c needs:
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1.3. Research Outcome: Knowledge Gain

• Woodworking tool: “Mary, the multitasking mom”—a part-time teacher who enjoys DIY
projects and wants to build a bird house with her daughter.

• E-commerce website: “Harry, the practical shopper”—a 55-year-old lawyer who wants to
buy a birthday gift for his partner.

2. What are their priorities?
What is important to them? Why are they looking for alternatives to existing solutions?

• Woodworking tool: Mary is mainly interested in the weight and noise level of the tool—it
should be light enough for one-handed use and quiet enough to be used inside an apartment
in the city.

• E-commerce website: Harry wants to complete his task quickly, so he values a clean, easy-
to-navigate design and the ability to }nd suitable products with minimal ezort.

Learning about your users and their priorities can give you a clearer sense of where to focus your ezorts.
If current solutions fall short in the dimensions your users care most about, then you’ve identi}ed a
meaningful gap—a real problem that’s worth solving.

The next step is to explore an innovative idea: a way to address this problem more ezectively
than existing alternatives, at least for this speci}c group of users. You may not yet know whether
such a solution is technically feasible, but the gap itself justi}es further exploration to better satisfy
your users’ needs.

1.3. Research Outcome: Knowledge Gain

In the world of consumer products, an innovative solution often addresses unmet needs or improves
a frustrating and ine{cient user experience. In research, we also aim to advance the state of the
art. That might mean }lling a gap in knowledge, or developing a new method, material, or process
with improved properties. In your area of expertise, you’re probably already aware of something that
could be improved—where existing approaches fall short and where your idea might ozer a better
solution.

Research goals are often shaped by the analytical methods we use, so clarifying the type of question
you’re addressing can sharpen your focus (Section 1.3). While research doesn’t have “users” in the
commercial sense, our work is still judged by peers. To convince them of its value—i.e., to get a paper
accepted—we must demonstrate that our approach outperforms existing ones on the criteria that
matter. For this, we rely on evaluation metrics that help quantify our idea’s advantages (Section 1.3).

Types of Research Questions

Most research questions can be categorized into four broad groups, each associated with a speci}c
type of analytics approach (Figure 1.2).
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1. Outcome: Why?

Figure 1.2.: Descriptive, diagnostic, predictive, and prescriptive analytics, with increasing computa-
tional complexity and need to write custom code.

Descriptive Analytics

This approach focuses on observing and describing phenomena to establish baseline measurements or
track changes over time.
Examples include:

• Identifying animal and plant species in unexplored regions of the deep ocean.
• Measuring the physical properties of a newly discovered material.
• Surveying the political views of the next generation of teenagers.

Methodology:

• Collect a large amount of data (e.g., samples or observations).
• Calculate summary statistics like averages, ranges, or standard deviations.

Diagnostic Analytics

Here, the goal is to understand relationships between variables and uncover causal chains to explain
why phenomena occur.
Examples include:

• Investigating how CO2 emissions from burning fossil fuels drive global warming.
• Evaluating whether a new drug reduces symptoms and under what conditions it works best.
• Exploring how economic and social factors in~uence shifts toward right-wing political parties.

Methodology:

• Perform exploratory data analysis, such as looking for correlations between variables.
• Conduct statistical tests to support or refute hypotheses (e.g., comparing treatment and placebo

groups).
• Design of experiments to control for external factors (e.g., randomized clinical trials).

10



1.3. Research Outcome: Knowledge Gain

• Build predictive models to simulate relationships. If the predictions from these models match
new real-world observations, it suggests their assumptions correctly represent causal ezects.

Predictive Analytics

This method involves building models to describe and predict relationships between independent vari-
ables (inputs) and dependent variables (outputs). These models often rely on insights from diagnostic
analytics, such as which variables to include in the model and how they might interact (e.g., linear or
nonlinear dependence). Despite its name, this approach is not just about predicting the future, but
used to estimate unknown values in general (e.g., variables that are di{cult or expensive to measure).
It also includes any kind of simulation model to describe a process virtually (i.e., to conduct in silico
experiments).
Examples include:

• Weather forecasting models.
• Digital twin of a wind turbine to simulate how much energy is generated under dizerent condi-

tions.
• Predicting protein folding based on amino acid sequences.

Methodology:
The key dizerence lies in how much domain knowledge informs the model:

• White-box (mechanistic) models: Based entirely on known principles, such as physical laws or
experimental }ndings. These models are often manually designed, with parameters }tted to
match observed data.

• Black-box (data-driven) models: Derived primarily from observational data. Researchers usually
test dizerent model types (e.g., neural networks or Gaussian processes) and choose the one with
the highest prediction accuracy.

• Gray-box (hybrid) models: These combine mechanistic and data-driven approaches. For example,
the output of a mechanistic model may serve as an input to a data-driven model, or the data-
driven model may predict residuals (i.e., prediction errors) from the mechanistic model, where
both outputs combined yield the }nal prediction.

Resources to learn more about data-driven models

If you want to learn more about how to create data-driven models and the machine learning
(ML) algorithms behind them, these two free online books are highly recommended:

– [11] Supervised Machine Learning for Science by Christoph Molnar & Timo
Freiesleben; a fantastic introduction focused on applying black-box models in sci-
enti}c research.

– [13] A Practitioner’s Guide to Machine Learning by me; a broader overview of ML
methods for a variety of use cases.

Provided the developed model is su{ciently accurate, researchers can then analyze its behavior (e.g.,
through a sensitivity analysis, which examines how outputs change with varying inputs) to gain further
insights about the modeled system itself (to feed back into diagnostic analytics).

11
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1. Outcome: Why?

Prescriptive Analytics

This approach focuses on decision-making and optimization, often using predictive models.
Examples include:

• Screening thousands of drug candidates to }nd those most likely to bind with a target protein.
• Optimizing reactor conditions to maximize yield while minimizing energy consumption.

Methodology:

• Decision support: Use models for “what-if” analyses to predict outcomes of dizerent scenarios.
For example, models can estimate the ezects of limiting global warming to 2°C versus exceeding
that threshold, thereby informing policy decisions.

• Decision automation: Use models in optimization loops to systematically test input conditions,
evaluate outcomes (e.g., resulting predicted material quality), and identify the best conditions
automatically.

Model accuracy is crucial

These recommendations are only as good as the underlying models. Models must accu-
rately capture causal relationships and often need to extrapolate beyond the data used
to build them (e.g., for disaster simulations). Data-driven models are typically better at
interpolation (predicting within known data ranges), so results should ideally be validated
through additional experiments, such as testing the recommended new materials in the lab.

Together, these four types of analytics form a powerful toolkit for tackling real-world challenges:
descriptive analytics provides a foundation for understanding, diagnostic analytics uncovers the causes
behind observed phenomena, predictive analytics models future scenarios based on this understanding,
and prescriptive analytics turns these insights into actionable solutions. Each step builds on the
previous one, creating a systematic approach to answering complex questions and making informed
decisions.

Evaluation Metrics

To demonstrate the impact of your work and compare your solution against existing approaches, it’s
crucial to de}ne what success looks like quantitatively. Consider these common evaluation metrics to
measure the outcome of your research and generate compelling results:

• Number of samples: This refers to the amount of data you’ve collected, such as whether you
surveyed 100 or 10,000 people. Larger sample sizes can provide more robust and reliable results.
It is also important to make sure your sample is representative of the population as a whole, i.e.,
to avoid sampling bias, which can cause misleading results and incorrect conclusions.

• Reliability of measurements: This evaluates the consistency of your data. For example, how
much variation occurs if you repeat the same measurement, e.g., run a simulation with dizerent
random seeds. This is important as others need to be able to reproduce your results.

12



1.4. Draw Your Idea

• Statistical signi}cance: The outcome of a statistical hypothesis test, such as a p-value that
indicates whether the dizerence in symptom reduction between the treatment and placebo groups
is signi}cant.

• Model accuracy: For predictive models, this includes:

– Standard metrics like 𝑅2 to measure how closely the model’s predictions align with obser-
vational data.

– Cross-validation scores to assess performance on new data.
– Uncertainty estimates to understand how con}dent the model is in its predictions.

• Algorithm performance: This includes metrics like memory usage and the time required to }t
a model or make predictions, and how these values change as the dataset size increases. E{cient
algorithms are crucial when scaling to large datasets or handling complex simulations.

• Key Performance Indicators (KPIs): Any other practical measures that matter in your
}eld. For example:

– For a chemical process: yield, purity, energy e{ciency.
– For a new material: strength, durability, cost.
– For an optimization task: convergence time, solution quality.

Your evaluation typically involves multiple metrics. For example, in prescriptive analytics, you need
to demonstrate both the accuracy of your model and that the recommendations generated with it led
to a genuinely optimized process or product. Before starting your research, review similar work in
your }eld to understand which metrics are standard in your community.

1.4. Draw Your Idea

Whether you’re collaborating with colleagues, presenting at a conference, or writing a paper—clearly
communicating the problem you’re solving and your proposed solution is essential.

Visual representations are particularly powerful for conveying complex ideas. One ezective approach
is creating “before and after” visuals that contrast the current state of the }eld with your
proposed improvements (Figure 1.3).

The “before” scenario might show a lack of data, an incomplete understanding of a phenomenon, poor
model performance, or an ine{cient process or material. The “after” scenario highlights how your
research addresses these issues and improves on the current state, such as re}ning a predictive model
or enhancing the properties of a new material.

At this point, your “after” scenario might be based on a hypothesis or an educated guess about what
your results will look like—and that’s totally }ne! The purpose of visualizing your solution is to guide
your development process. Later, you can update the picture with actual results if you decide to
include it in a journal publication, for example.

Of course, not all ideas are tied directly to analytics. Sometimes the main improvement is more
qualitative, for example, focusing on design or functionality (Figure 1.4).

It is also not always necessary to include a “before” scenario, for example, if existing solutions are not
directly comparable or so well known that they require no further explanation (Figure 1.5).

13



1. Outcome: Why?

Figure 1.3.: Exemplary research goals and corresponding “before and after” visuals for descriptive,
diagnostic, predictive, and prescriptive analytics tasks.

Figure 1.4.: This example illustrates a task where a robot must reach its target (represented by money)
as e{ciently as possible. Original approach (left): The robot relied on information
encoded in the environment as expected rewards. To determine the shortest path to the
target, the robot required a large sensor (shown as the yellow circle) capable of scanning
multiple nearby }elds to locate the highest reward. New approach (right): Instead of
relying on reward values scattered across the environment, the optimal direction is now
encoded directly in the current }eld. This eliminates the need for large sensors, as the
robot only needs to read the value of its current position, enabling it to operate with
a much smaller sensor and thereby reducing hardware costs. Additional experiments
still need to be demonstrate that with the new approach, the robot reaches its target at
least as quickly as with the original approach.

14



1.5. Draw Your Advantage

Figure 1.5.: Illustration of the approach used in the paper Automating the search for a patent’s prior
art with a full text similarity search [12] (where the alternative would be an ordinary
manual keyword search).

Of course, the examples shown here are already re}ned for publication—your initial sketches will
probably look a bit messier (Figure 1.6). Have a look at [4] for some tips on communicating science
through visualizations and creating insightful graphics.

Give it a try—does the sketch help you explain your research to your family?

1.5. Draw Your Advantage

Ideally, you should already have an idea of how existing approaches perform on relevant evaluation
metrics (e.g., based on }ndings from other publications) to establish the baseline your solution
should outperform. You’ll likely need to replicate at least some of these baseline results (e.g., by
reimplementing existing models) to ensure your comparisons are not in~uenced by external factors.
But understanding where the “competition” stands can also help you identify secondary metrics where
your solution could excel. For example, even if there’s little room to improve model accuracy, existing
solutions might be too slow to handle large datasets e{ciently (Figure 1.7).1

These results are central to your research (and publications), and much of your code will be devoted
to generating them, along with the models and simulations behind them. Of course, at this stage,
your solution’s performance on these dimensions is still aspirational—this graph simply illustrates
the gap your approach aims to }ll. But clearly de}ning the key metrics needed to demonstrate
your research’s impact will help you focus your programming ezorts ezectively.

1For example, currently, a lot of research aims to replace traditional mechanistic models with data-driven machine
learning models, as these enable signi}cantly faster simulations. A notable example is the AlphaFold model, which
predicts protein folding from amino acid sequences—a breakthrough so impactful it was recognized with a Nobel
Prize [3]!

15



1. Outcome: Why?

Figure 1.6.: One of several sketches and the resulting }nal }gure that was included in my PhD thesis
[14] (showing the SchNet neural network architecture).

Figure 1.7.: “Chart your competitive position” [1]: The metrics we’re interested in often represent
trade-ozs. For example, we want a high quality product, but it should also be cheap. Or
a good model accuracy, but at the same time not use excessive compute resources. Your
solution might not outperform existing baselines on all metrics, but its trade-oz could still
be preferable.

16



1.5. Draw Your Advantage

Before you continue

At this point, you should have a clear understanding of:

• The problem you’re trying to solve.
• Existing solutions to this problem, i.e., the baseline you’re competing against.
• Which metrics should be used to quantify your improvement on the current state.

17





2. Output: What?

In the previous chapter, we’ve gained clarity on the problem you’re trying to solve and how to quantify
the improvements your research generates. Now it’s time to dive deeper into what these results might
actually look like and the data on which they are built. More speci}cally, we want to understand what
kind of output our code should create in order to be useful for our users (Figure 2.1), for example,
what kind of plots would help your audience to understand the bene}ts of your approach.

Figure 2.1.: The output that our code generates needs to be useful for our users.

2.1. Commercial Software Output: UX Design

Commercial software applications are often complex systems with interactive graphical user interfaces
(GUIs) that must be carefully designed to meet user needs. To achieve this, user experience (UX)
designers typically create sketches, wireframes, or mockups (Figure 2.2) to explore dizerent
design ideas and converge on a solution that is valuable, intuitive, and enjoyable to use.

Figure 2.2.: A simple mockup illustrating the user experience ~ow on an e-commerce website, from
opening the page and looking at a product to purchasing it.

A key part of this process is to empathize with the user’s experience. How will users interact
with the product? Under what conditions will they use it, and for how long? These factors introduce

19



2. Output: What?

constraints that must shape your design. For example, if a website is frequently accessed on smart-
phones with large text settings, the layout must remain functional and visually appealing under those
conditions.

Validating your design with real users is essential. Every design decision is a bet—an assumption
about what users need and how they’ll respond. Before committing signi}cant resources to implemen-
tation, you need to test whether that bet is likely to pay oz.

This makes UX design an iterative process: the design is re}ned through multiple cycles until it
reasonably satis}es its intended goals. And because software is ~exible—unlike physical products that
are costly to alter after production—you should continue testing and re}ning your product as
you build it. Use this adaptability to your advantage by iterating continuously, ensuring the product
evolves with your users’ needs over time.

2.2. Research Output: Data Analysis Results

No matter how much programming your project requires, nearly all scienti}c work involves analyzing
your data to create result plots for publications or presentations—the }nal output of your code
that will be seen by others.

When analyzing data, the process is typically divided into two phases:

1. Exploratory Analysis: This involves generating a variety of plots to gain a deeper understand-
ing of your data, such as identifying correlations between variables. It’s often a quick and dirty
process to help you familiarize yourself with the dataset.

2. Explanatory Analysis: This focuses on creating re}ned, polished plots intended for commu-
nicating your }ndings to others, such as in a publication or presentation. These visuals are
designed to clearly convey your results to an audience that may not be familiar with your data.

But before we dive into how to conduct exploratory and explanatory analyses, let’s }rst take a quick
look at what data actually is.

Data Types

In one form or another, you’re research will rely on data, both collected or generated by yourself and
possibly others.

Structured vs. Unstructured Data

Data can take many forms, but one key distinction is between structured and unstructured data
(Figure 2.3).

Structured data is organized in rows and columns, like in Excel spreadsheets, CSV }les, or
relational databases. Each row represents a sample or observation (a data point), while each column
corresponds to a variable or measurement (e.g., temperature, pressure, household income, number of
children).

20



2.2. Research Output: Data Analysis Results

Figure 2.3.: Structured and unstructured data.

Unstructured data, in contrast, lacks a prede}ned structure. Examples include images, text,
audio recordings, and videos, typically stored as separate }les on a computer or in the cloud.
While these }les might include structured metadata (e.g., timestamps, camera settings), the data
content itself can vary widely—for instance, audio recordings can range from seconds to hours in
length.

Structured data is often heterogeneous, meaning it includes variables representing dizerent kinds of
information with distinct units or scales (e.g., temperature in °C and pressure in kPa). Unstructured
data tends to be homogeneous; for example, there’s no inherent dizerence between one pixel and the
next in an image.

This book focuses on structured data

Even though unstructured data is common in science (e.g., microscopy images), for simplicity,
this book focuses on structured data. Furthermore, for now we’ll assume that your data is stored
in an Excel or CSV }le, i.e., a spreadsheet with rows (samples) and columns (variables), on your
computer. Later in Chapter 6, we’ll discuss more advanced options for storing and accessing
data, such as databases and APIs.

Programming Data Types

Each variable in your dataset (i.e., each column in your spreadsheet) is represented as a speci}c data
type, such as:

• Numbers (integers for whole numbers or ~oats for decimals)
• Strings (text)
• Boolean values (true/false)

In programming, these are so-called primitive data types (as opposed to composite types, like lists or
dictionaries containing multiple values, or user-de}ned objects) and de}ne how information is stored
in computer memory.
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Data types in Python

# integer
i = 42
# float
x = 4.1083
# string
s = "hello world!"
# boolean
b = False

Statistical Data Types

Even more important than how your data is stored, is understanding what your data means. Variables
fall into two main categories:

1. Continuous (numerical) variables represent measurable values (e.g., temperature, height).
These are usually stored as ~oats or integers.

2. Discrete (categorical) variables represent distinct options or groups (e.g., nationality, prod-
uct type). These are often stored as strings, booleans, or sometimes integers.

Misleading data types

Be cautious: a variable that looks numerical (e.g., 1, 2, 3) may actually represent categories.
For example, a material_type column with values 1, 2, and 3 might correspond to aluminum,
copper, and steel, respectively. In this case, the numbers are IDs, not quantities.

Recognizing whether a variable is continuous or discrete is crucial for creating meaningful visualizations
and using appropriate statistical models.

Time Series Data

Another consideration is whether your data points are linked by time. Time series data often refers
to numerical data collected over time, like temperature readings or sales numbers. These datasets are
usually expected to exhibit seasonal patterns or trends over time.

However, nearly all datasets involve some element of time. For example, if your dataset consists
of photos, timestamps might seem unimportant, but they could reveal trends—like changes in image
quality due to new equipment.

Always record timestamps

Always include timestamps in your data or metadata to help identify potential correlations or
unexpected trends over time.
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Sometimes, you may be able to collect truly time-independent data (e.g., sending a survey to 1,000
people simultaneously and they all answer within the next 10 minutes). But usually, your data
collection will take longer and external factors—like an election during a longer survey period—might
unintentionally azect your results. By tracking time, you can assess and adjust for such in~uences.

Exploratory Analysis

In this initial analysis, the goal is to get acquainted with the data, check if the trends and relationships
you anticipated are present, and uncover any unexpected patterns or insights.

• Examine the raw data:

– Is the dataset complete, i.e., does it contain all the variables and samples you expected?

• Examine summary statistics (e.g., mean, standard deviation (std), min/max values, missing
value count, etc.):

– What does each variable mean? Given your understanding of the variable, are its values in
a reasonable range?

– Are missing values encoded as NaN (Not a Number) or as ‘unrealistic’ numeric values (e.g.,
-1 while normal values are between 0 and 100)?

– Are missing values random or systematic (e.g., speci}c measurements might only be col-
lected under certain conditions; in a survey rich people are less likely to answer questions
about their income)? This can in~uence how missing values should be handled, e.g., whether
it makes sense to impute them with the mean or some other speci}c value (e.g., zero).

• Examine the distributions of individual (continuous) variables:

Figure 2.4.: Histogram, strip plot, violin plot, box plot, and summary statistics of the same values.

– Are there any outliers? Are these genuine edge cases or can they be ignored (e.g., due to
measurement errors or wrongly encoded data)?

– Is the data normally distributed or does the plot show multiple peaks? Is this expected?

• Examine trends over time (by plotting variables over time, even if you don’t think your data
has a meaningful time component, e.g., by lining up representative images according to their
timestamps to see if there is a pattern):
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Figure 2.5.: What caused these trends and what are their implications for the future? This plot shows
}ctitious data of the pressure in a pipe azected by fouling—that is, a buildup of unwanted
material on the pipe’s surface, leading to increased pressure. The pipe is cleaned at regular
intervals, causing a drop in pressure. However, because the cleaning process is imperfect,
the baseline pressure gradually shifts upward over time.

– Are there time periods where the data was sampled irregularly or samples are missing?
Why?

– Are there any (gradual or sudden) data drifts over time? Are these genuine changes (e.g.,
due to changes in the raw materials used in the process) or artifacts (e.g., due to a malfunc-
tioning sensor recording wrong values)?

• Examine relationships between two variables:

Figure 2.6.: Depending on the variables’ types (continuous or discrete), relationships can be shown in
scatter plots, box plots, or a table. Please note that not all interesting relations between
the two variables can be detected through a high correlation coe{cient, so you should
always check the scatter plot for details.

– Are the observed correlations between variables expected?

• Examine patterns in multidimensional data (using a parallel coordinate plot):
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Figure 2.7.: Each line in a parallel coordinate plot represents one data point, with the corresponding
values for the dizerent variables marked at the respective y-axis. The screenshot here
shows an interactive plot created using the Python plotly library. By selecting value
ranges for the dizerent dimensions (indicated by the pink stripes), it is possible to spot
interesting patterns resulting from a combination of values across multiple variables.

– Do the observed patterns in the data match your understanding of the problem and dataset?

Explanatory Analysis

Most of the plots you create during an exploratory analysis are likely for your eyes only. Any plots you
do choose to share with a broader audience—such as in a paper or presentation—should be re}ned
to clearly communicate your }ndings. Since your audience is much less familiar with the data
and likely lacks the time or interest to explore it in depth, it’s essential to make your results more
accessible. This process is often referred to as explanatory analysis [20].

Don’t force an exploratory analysis onto your audience

Don’t “just show all the data” and hope that your audience will make something of it—understand
what they need to answer the questions they have.

When choosing and designing your plots, keep the user experience in mind. Ask yourself: Does this
visualization clearly convey the results? Is it easy to understand and interpret?
Use the following steps to help you evaluate and improve your plot design.

Step 1: Choose the right plot type

• Get inspired by visualization libraries (e.g., here or here), but avoid the urge to create fancy
graphics; sticking with common visualizations makes it easier for the audience to correctly decode
the presented information.

• Don’t use 3D ezects!
• Avoid pie or donut charts (angles are hard to interpret).
• Use line plots for time series data.
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• Use horizontal instead of vertical bar charts for audiences that read left to right.
• Start the y-axis at 0 for area & bar charts.
• Consider using small multiples or sparklines instead of cramming too much into a single chart.

Figure 2.8.: Left: Bar charts (especially in 3D) make it hard to compare numbers over a longer period
of time. Right: Trends over time can be more easily detected in line charts. [Example
adapted from: Storytelling with Data by Cole Nussbaum Kna~ic]

Step 2: Cut clutter / maximize data-to-ink ratio

• Remove border.
• Remove gridlines.
• Remove data markers.
• Clean up axis labels.
• Label data directly.

Figure 2.9.: Cut clutter! [Example adapted from: Storytelling with Data by Cole Nussbaum Kna~ic]

Step 3: Focus attention

• Start with gray, i.e., push everything in the background.
• Use pre-attentive attributes like color strategically to highlight what’s most important.
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• Use data labels sparingly.

Figure 2.10.: Start with gray and use pre-attentive attributes strategically to focus the audience’s
attention. [Example adapted from: Storytelling with Data by Cole Nussbaum Kna~ic]

Step 4: Make data accessible

• Add context: Which values are good (goal state), which are bad (alert threshold)? Should the
value be compared to another variable (e.g., actual vs. forecast)?

• Leverage consistent colors when information is spread across multiple plots (e.g., data from a
certain country is always shown in the same color).

• Annotate the plot with text explaining the main takeaways. If this is not possible, e.g., in
interactive dashboards where the data keeps changing, the title can instead include the question
that the plot should answer (e.g., “Is the material quality on target?”).

Figure 2.11.: Tell a story. [Example adapted from: Storytelling with Data by Cole Nussbaum Kna~ic]
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2.3. Draw Your Output

You may not have looked at your data yet—or maybe you haven’t even collected it—but it’s important
to start with the end in mind.1 Similar to how UX designers create mockups to visualize a product
before it gets built, we also need to envision what the }nal output of our code should look like before
writing it. The key dizerence is that, instead of users interacting directly with the software, they’ll
typically only see the results—such as plots or tables—produced by your script, often in a journal
article or presentation.

Based on your takeaways from the previous chapter—about the problem you’re solving and the met-
rics you should use to evaluate your solution—try sketching what your }nal results might look like.
Put yourself in your audience’s shoes and consider what they need to address their questions and
concerns. Ask yourself: What }gures or tables would best communicate the advantages of
my approach?2

Depending on your research goal, your results might be as simple as a single number, such as a p-
value or the total number of people surveyed. However, if you’re reading this, you’re likely tackling
something that requires a more complex analysis. For example, you might compare your model’s
overall performance to several baseline approaches or illustrate how your solution converges over time
(Figure 2.12).

Figure 2.12.: Exemplary envisioned results: The plots show the outcome of a multi-agent simulation,
where ‘my approach’ clearly outperforms two baseline methods. In this simulation, a
group of agents is tasked with locating a food source in the environment and transporting
the food back to their home base piece by piece. The ideal algorithm identi}es the
shortest path to the food source quickly to maximize food collection. Each algorithmic
approach is tested 10 times using dizerent random seeds to evaluate reliability. The
plots display the mean and standard deviations across these runs. Left: How quickly
each algorithm converges to the shortest path (resulting in the highest number of agents
delivering food back to the home base per step). Right: Cumulative food collected by
the end of the simulation.3

1A former master’s student that I mentored humorously called this approach “plot-driven development,” a nod to test-
driven development (TDD) in software engineering, where you write a test for your function }rst and then implement
the function to pass the test. Plot-driven development later turned into clarity-driven development, but the idea
behind it stayed the same: understand what output your software should create before writing the code to make it
happen.

2If you’re already drafting a paper or presentation, you could even use these sketches of your results as placeholders to
make sure they are advancing the story you’re trying to tell.
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Just as UX designs are tested with real users, you should share your result sketches with others
and observe where they struggle. Do your colleagues interpret your plots the way you intend? Are
they understanding the message you’re trying to convey?

It’s important to remember that your actual results might look very dizerent from your initial
sketches—they might even show that your solution performs worse than the baseline! This is com-
pletely normal. The scienti}c method is inherently iterative, and unexpected results are often
a stepping stone to deeper understanding. By starting with a clear plan, you can generate results
more e{ciently and quickly pivot to a new hypothesis if needed. When your results deviate from your
expectations, analyzing those dizerences can sharpen your intuition about the data and help you form
better hypotheses in the future.

Before you continue

At this point, you should have a clear understanding of:

• The speci}c results (tables and }gures) you want to create to show how your solution
outperforms existing approaches (e.g., in terms of accuracy, speed, etc.).

• What types of data you’re working with to produce these results (e.g., what kind of values
will be stored in the rows and columns of your spreadsheet).

3These plots were generated with Python using matplotlib’s plt.xkcd() setting and the xkcd script font. A pen and
paper sketch will be su{cient for your case.
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3. State & Flow: How?

Now that you know what outputs you want to create, are you itching to start programming? Hold on
for a moment!

One of the most common missteps I’ve seen junior developers take is jumping straight into
coding without }rst thinking through what they actually want to build. Imagine trying to
construct a house by just laying bricks without consulting an architect }rst—halfway through you’d
probably realize the walls don’t align, and you forgot the plumbing for the kitchen. You’d have to tear
it down and start over! To avoid this fate for your software, it’s essential to make a plan and sketch
out the }nal design }rst (Figure 3.1).

Figure 3.1.: Before we write code, we should }rst think about what it is we actually want to write,
i.e., how this code is supposed to work.

Your software design doesn’t have to be perfect—we don’t want to overengineer our solution, especially
since many details only become clear once we start coding and see how users interact with the software.
But the more thought you put into planning, the smoother and faster execution will be.

Unlike a house, where your design will be quite literally set in stone, code should be designed with
~exibility in mind. While expanding a house to add extra rooms for a growing family—and then
removing them again when downsizing for retirement—would be costly and di{cult, this kind of
adaptability is exactly what we strive for in software. Our goal is to create code that can evolve
with changing requirements.

To make sure your designs will be worthy of implementation, this chapter also introduces key paradigms
and best practices that will help you create clean, maintainable code that’s easy to extend and
reuse in future projects.

Dizerence between commercial software and research code?

Commercial software applications and the scripts used in your research share many of the same core
principles—both involve writing code to produce outputs, and both bene}t from the same standards
of good code quality. That’s the topic of this chapter.
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However, full-scale software applications, especially those with graphical interfaces, are naturally more
complex than a script that generates static results. The additional components required for production-
grade software are covered later in Chapter 6.

3.1. Step by Step: From Output to Input

Once we know the outputs we want (e.g., result plots), the next step is identifying the sequence of
instructions (~ow) and the data (state) required to generate them.

At its core, programming is about transforming inputs into outputs. To determine the process
for obtaining the desired results, we can work backward to }gure out what data we need to
create them (Figure 3.2). This is especially important when generating data yourself, such as through
simulations. For example, if you want to plot how values change over time, you’ll need to record
variables at every time step—not just the }nal outcome of a simulation (duh!).

Figure 3.2.: Work backward from the desired results to determine what data is needed to create them.

Breaking Down the Steps

Let’s map out the steps required to create the above scatter plot displaying actual values Ԩ (y), model
predictions ̂Ԩ (y_pred), and the 𝑅2 value (R2) in the title to indicate the model’s goodness of }t:

1. To create the plot, we need R2, y, and y_pred.
plot_results(R2, y, y_pred)

2. R2 can be computed from the values stored in y and y_pred.
R2 = compute_r2(y, y_pred)

3. y can be loaded from a }le containing test data.
y = ...

4. y_pred must be estimated using our model, which requires:
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• The corresponding input values (x1 … x5) from the test data }le.
• A trained model that can make predictions.

X_test = ...
y_pred = model.predict(X_test)

5. To obtain a trained model, we need to:

• Create an instance of the model with the correct con}guration.
• Load the training data.
• Train the model on the training data.

model = MyModel(config)
X_train, y_train = ...
model.fit(X_train, y_train)

6. The model con}guration needs to be provided by the user when running the script.
config = ...

Of course, in the actual implementation, each step will require further details (e.g., the formula for
computing 𝑅2 or how to load the training and test datasets). But since we know that following this
sequence in reverse order will produce the desired results, this already provides us with the rough
outline of our code (see Section 3.4 for how these steps could come together in the }nal script).

Optimize the ordering of steps

Some steps depend on others (e.g., you must }t your model before making predictions), but
others can be performed in any order. Optimizing the sequence can improve performance
and e{ciency.
For example, if you’re baking bread, you wouldn’t preheat the oven hours before the dough has
risen—that would waste energy. Similarly, when processing a large dataset, where you need
to perform an expensive computation on each item but only a speci}c subset of these items is
included in the }nal results, then it may be more e{cient to }lter the items }rst so you only
compute values for the necessary items:

De}ne Intermediate Data Structures

When transforming input data into desired outputs, it’s often necessary to persist (i.e., save)
intermediate results (Figure 3.3).

Especially when dizerent scripts or processes create and consume these intermediate result
}les, they should be stored in a format that makes sense for both sides. For example:
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Figure 3.3.: The script to create the result plot in a nutshell: At the top you see the output that is
presented to the user in the user interface (UI) as the code is being executed. For the
most part, this just consists of some log messages displayed in the terminal to show the
progress of the script and then the }nal plot. Below this is the high level control ~ow,
i.e., the sequence of instructions that we outlined in the previous section as the steps to
get from input to output. While these instructions are executed, dizerent variables (like
model and y_pred) hold the current state of the program in memory. Some of the
values stored in these variables are read from external }les, possibly created by a dizerent
program. In case your script crashes in between, it is helpful to write intermediate results
to disk (i.e., persist the current state of your variables). You could then load these
}les again to recreate the program’s previous state (indicated by the light gray arrows)
and execute the remaining steps.
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• A user }lls out a form on a website. Their information is stored in a database so it can later be
retrieved and displayed on their account page.

• You run simulations that output data to CSV }les. These }les are then used by a separate script
to generate plots.

• You de}ne model settings in a config.yml }le, which your script reads to initialize the model
with the correct con}guration.

It’s important to carefully design the structure of this intermediate data—what }elds it includes,
what they’re called, and how they’re organized. Because if you later need to change the format, you’ll
have to update both the producer and consumer processes, and potentially migrate existing data.

To design an ezective structure, start by identifying the }elds required by the downstream process.
Then consider whether other processes might use this data and if they might need additional }elds.
Don’t overengineer it—we’re not trying to future-proof against every possible scenario. But it’s worth
considering whether to store data at a }ner level of detail than what’s currently needed. It’s much easier
to extract or summarize detailed data later than to reverse-engineer missing details from aggregate
values.

Plan your experiments

If your code does more than generate plots—for example, if you’re running a simulation—you
also need to plan your experiment runs. Ideally, your code should allow you to run the same
script with dizerent parameter con}gurations, making it easy to test dizerent setups.
To determine all possible con}guration variants for your experiments, consider:

• The models or algorithms you want to compare (your approach and relevant baselines).
• The hyperparameter settings you want to test for each model.
• The datasets or simulation environments on which you’ll evaluate your models.
• If your setup includes randomness (e.g., model initialization or simulation stochasticity),

how many dizerent random seeds you’ll use to estimate variability.

Think about the data each experiment run will generate and how you’ll process it later. For
instance, you might need a separate script that loads data from multiple runs to create additional
plots comparing the performance of multiple models. This is simpli}ed by using a clear naming
convention for all output }les, such as:

{dataset}_{model}_{model_settings}_{seed}.csv

If your experiments will take several days, check whether you can run them on a compute
cluster, submitting each experiment as a separate job to run in parallel.

Designing an Algorithm

Some problems require more creativity to come up with an e{cient algorithm that produces the
correct output from a given input. Take the traveling salesman problem, where the goal is to }nd
the shortest possible route through a given set of cities. Designing an e{cient solution often involves
choosing the right data structures (e.g., representing cities as nodes in a graph), using heuristics,
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and breaking the problem down into simpler subproblems (divide & conquer strategy). If
you’re working on a novel problem, studying algorithm design can be invaluable (one of my favorite
books on the topic is The Algorithm Design Manual by Steven Skiena [30]).

However, for many common tasks, you can leverage existing algorithms instead of reinventing the
wheel. For the rest of this book, we’ll assume you already have a general idea of the steps your code
needs to perform and focus on how to implement them ezectively.

While our list of steps enables us to create working code, unfortunately, this is not the same as good
code. A script with a long sequence of instructions can be di{cult to read, understand, and maintain.
Since you’ll likely be working with the same code for a while—and may even want to reuse parts of it
in future projects—it’s worth investing in better design. Let’s explore how to make that happen.

3.2. Analogy: The Cupcake Recipe

Before diving into how to write good code, let’s explore the basic principles using a more relatable ex-
ample: a cupcake recipe (Figure 3.4). Because who wants result plots when you could have cupcakes?!
�

Figure 3.4.: A chef writes a recipe, which then needs to be executed (baked) to generate the output
(cupcakes) that the consumers enjoy.

Like code, a recipe is just text that describes a sequence of steps to achieve a goal. What
you ultimately want are delicious cupcakes (your result plots). The recipe (your script) details how to
transform raw ingredients (input) into the baked goods (output). But the steps don’t mean anything
unless you actually execute them—you have to bake the cupcakes (run python script.py) to get
results.

So, how can we write a good recipe?

Breaking Down the Steps

To start, we brainstorm all the necessary steps for making cupcakes (Figure 3.5). For this, we
can again work backward from the }nal result (cupcakes) through the intermediate steps (cake
batter and frosting) until we reach the raw ingredients.

You’ll notice that your list includes both ingredients (in code: variables containing data) and in-
structions for transforming those ingredients, like melting butter or mixing multiple ingredients
(in code: the control ~ow, i.e., statements, including conditionals (if/else) and loops (for, while),
that create intermediate variables). These steps also need to follow a speci}c order—you wouldn’t
frost a cupcake before baking it! Often, steps depend on one another, requiring a structured
sequence (Figure 3.6).
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Figure 3.5.: Everything you need to make cupcakes. The unstructured brain dump we’ll transform
into a proper recipe.

Figure 3.6.: A recipe usually includes a list of ingredients followed by instructions on what to do with
them. The order matters, especially when one step depends on the completion of another.

Avoiding Repetition: Reusable Steps

If your recipe is part of a cookbook with multiple related recipes, some steps might apply to several
of them. Instead of repeating those steps in every recipe, you can group and document them in
a separate section (in code: de}ne a function) and reference them when needed (Figure 3.7).

This follows the Don’t Repeat Yourself (DRY) principle [31]. Not only does this reduce redun-
dancy, but it also makes updates easier—if a general step changes (e.g., you re}ne a technique or }x
a typo), you only need to update it in one place (a single source of truth).

Figure 3.7.: Some instructions might be relevant in multiple recipes (e.g., general baking tips); instead
of repeating them in every recipe, you can just refer to the page where they are described.

Organizing by Components

Looking at your recipe, you might notice that some ingredients and instructions naturally group
into self-contained components (in code: classes). Structuring the recipe this way makes it clearer
and easier to follow (Figure 3.8). Instead of juggling all the steps at once, you can focus on creating
one component at a time—}rst the plain cupcake, then the frosting, then assembling everything.

This modular approach also allows delegation—for example, you could buy pre-made cupcakes and
just focus on making the frosting. In programming, this means that the }nal code doesn’t need
to know how each component was made—it only cares that the components exist.
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Figure 3.8.: For more complex recipes where the }nal dish consists of multiple components (like cup-
cakes, which have cake part and frosting), grouping by component improves clarity.

Making Variants with Minimal Ezort

Organizing a recipe into components also makes it easier to create variations (Figure 3.9).

Two key concepts make this possible:

1. Polymorphism—each variation should behave like the original so it can be used interchangeably
(in code: implement the same interface).

2. Code reuse—instead of rewriting everything from scratch, extend the original recipe by spec-
ifying only the changes (in code: use inheritance or mixins).

For example, a chocolate frosting variant extends the plain frosting recipe by adding cocoa powder.
The rest of the instructions remain unchanged.

Figure 3.9.: Some components have variants that can be used as drop-in replacements. Since these
variants extend the original (e.g., chocolate frosting builds on plain frosting), we reuse
existing instructions and only describe what’s new.

By applying these strategies, we turn a random assortment of ingredients and instructions into a well-
structured, easy-to-follow recipe. This makes the cookbook not only clearer but the recipes also easier
to maintain and extend—changes to general instructions only need to be made once, and readers can
ezortlessly create variations by reusing existing steps.

Now, let’s take the same approach with code.

38



3.3. Good Code

3.3. Good Code

When we talk about “good code” in this book, we focus on three key properties, each building upon
and in~uencing the others:

1. Easy to understand: To work with code, you need to be able to understand it. When using
a common library, it may be enough to know what a function does and how to use it, trusting
that it works correctly under the hood. But with your own code, you also need to understand
the implementation details. Otherwise, you’ll hesitate to make changes and won’t be able to
con}dently say that it behaves as expected. Since code is read far more often than it is written,
making it easy to understand ultimately saves time in the long run.

2. Easy to change: Code is never truly }nished. It requires ongoing maintenance—}xing bugs,
updating dependencies (e.g., when a library releases a security patch with breaking changes),
and adapting to evolving requirements, such as adding new features to stay competitive. Code
that is easy to modify makes all of this much smoother.

3. Easy to build upon and reuse: Ideally, adding new features shouldn’t mean proportional
growth in your codebase. Instead, you should be able to reuse existing functionality. Following
the DRY (Don’t Repeat Yourself) principle—avoiding redundant logic—makes code easier to
maintain because updates only need to be made in one place.

These qualities (along with others, like being easy to test) can be achieved by breaking code into
smaller, independent units and organizing them into clear layers of abstraction. This approach
has multiple bene}ts:

• Manageable cognitive load: Smaller units }t comfortably into your working memory, making
them easier to understand and reason about.

• Ease of modi}cation: Since units are independent, you can change one without unintended
side ezects elsewhere.

• Reusability: Well-designed, general-purpose building blocks allow you to quickly assemble
more complex functionality—like constructing something out of LEGO bricks.

From Complex to Complicated

A well-known software engineering principle is KISS—“Keep It Simple, Stupid!” While this is good
advice at the level of individual functions or classes, it’s unrealistic to expect an entire software system
to be simple. Most real-world software consists of multiple interacting components, making it inher-
ently complicated rather than simple. The goal is to avoid unnecessary complexity (Figure 3.10).

A complex system has many interconnected elements with dependencies that are di{cult to trace.
Making a small change in one place can unexpectedly break something elsewhere. This makes debug-
ging and maintenance a nightmare.

Instead, we aim for a complicated system—one that may have many components, but is structured
into independent, well-organized subsystems [17]. This way, we can understand and modify individual
parts without having to fully grasp the entire system. To achieve this, components should be:

1The fourth category is chaotic, where cause and ezect are unknowable. In software, this could be compared to rare
cosmic-ray-induced bit ~ips that cause random, unpredictable behavior.
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Figure 3.10.: In accordance with the Cyne}n framework, (software) systems can have dizerent levels
of complexity [17]. A script that sequentially executes a few steps might be simple. Most
software, however, is at least complicated—it consists of multiple interacting components
but can still be broken down into understandable subsystems. A complex system, often
referred to as “spaghetti code” or a “big ball of mud” [7], has so many interdependencies
that its behavior is very di{cult to predict—changes in one part can have unintended
consequences elsewhere.1 (Figure adapted from [24])

• Decoupled – minimizing dependencies between them.
• Cohesive – ensuring they are “complete” and contain all the code needed to ful}ll their purpose.

Decomposing a system this way will always constitute a trade-oz, requiring us to balance local
vs. global complexity [17]. Consider two extremes:

• A system with two massive 500-line functions has low global complexity (only two things
to keep track of) but high local complexity (each function is overwhelming to understand).

• A system with 500 tiny 2-line functions has low local complexity (each function is simple)
but high global complexity (understanding how they interact becomes di{cult).

What constitutes a “right-sized” unit—small enough to be understandable, yet large enough to
avoid excessive fragmentation—will depend on the context and your personal preferences (I usually
aim for functions with around 5-15 lines of code).

Ideally, these units should then form a hierarchy with dizerent levels of abstraction (Figure 3.11),
where lower-level units can be used as building blocks to create more advanced functionality.

At each level, you only need to understand how to use the functions at lower levels but not their
internals. This reduces cognitive load, making it easier to navigate and extend the codebase with
con}dence.

However, it’s important to note that low-level functions should ideally be kept stable, since
everything built on top of them depends on their behavior. If these functions change, any code
that relies on them will also need to be updated. This applies not only to your own functions
but also to external libraries your code depends on.

Standard libraries (i.e., those included with a programming language, not installed separately) are
generally safe to build upon, as their functionality tends to be stable. In contrast, relying heavily
on experimental or rapidly evolving libraries can lead to constant breakage as new versions introduce
changes. To mitigate this, consider implementing an anti-corruption layer—a wrapper that provides
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3.3. Good Code

Figure 3.11.: Complicated systems in software design often follow a hierarchy of abstraction. For
example, to plot the results of a predictive model you call a function to create a scatter
plot of predicted vs. actual values, which internally calls another, more speci}c function
to compute the 𝑅2 value displayed in the plot’s title.

a stable interface and handles necessary transformations. This centralizes adaptation and isolates the
rest of your code from volatile dependencies.

Cohesive & Decoupled Units

Code consists of variables that store data (state) and statements such as conditionals (if/else),
loops (for/while), and transformations of this data to generate the desired output (control ~ow).
To make our code easier to understand, modify, and reuse, we group related lines of code into
individual units: functions and classes.

Each unit has an interface (what is visible from the outside) and an implementation (the actual
code—details that users of the unit shouldn’t need to worry about). By designing simple interfaces
that hide complex implementations, we create an abstraction that reduces cognitive load.

A good unit is both cohesive and decoupled:

• Cohesion: Each unit should do a single, well-de}ned task, and all its code should relate to that
purpose.

• Decoupling: Units should have minimal dependencies on other parts of the code or external
resources. This reduces the risk that changes in one part of the system trigger more changes in
multiple other parts.

In the following sections, we’ll explore how to create such units in practice.

Interface & Implementation

To avoid creating an unmanageable tangle of code, it’s crucial that we establish clear boundaries
for each subsystem—what is inside a unit’s scope and what isn’t. These boundaries form the unit’s
interface: the part that is accessible from the outside and works like a contract, guaranteeing stable
usage over time.
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The unit’s implementation, on the other hand, consists of the internal details of how the code works.
This part is private and subject to change, meaning others shouldn’t rely on it.

Let’s look at a simple example:

def n_times_x(x, n):
result = 0
for i in range(n):

result += x
return result

if __name__ == '__main__':
# call our function with some values
my_result = n_times_x(3, 5)
print(my_result) # should output 15

The interface (also called signature) of the n_times_x function consists of:

• The function name (n_times_x)
• The input arguments (x and n)
• The return value (result)

Make interfaces explicit

Interfaces should be explicit and foolproof, especially since not all users read documentation
carefully.
For example, if a function relies on positional arguments, users might accidentally swap values,
leading to hard-to-}nd bugs. Using keyword arguments (i.e., forcing users to specify argument
names) makes the interface clearer and reduces errors.

As long as the interface remains unchanged, we can freely modify the implementation. For instance,
we can replace the ine{cient loop with a proper multiplication:

def n_times_x(x, n):
return n * x

This change improves e{ciency, but since the function still works the same way externally (it’s called
with the same arguments and returns the same results), no updates are required in other parts of the
code. This is the power of clear boundaries.

However, changing a function’s name, for example, is another story. If we rename n_times_x, every
reference to it must also be updated. Modern IDEs can automate this within a project, but if the
function is used in external code (e.g., if it is part of an open source library), renaming requires a
deprecation process to transition users gradually.

This is why choosing stable, well-thought-out interfaces upfront saves ezort in the long
run.
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Go deep

Powerful units have narrow interfaces with deep implementations—they expose only
what’s necessary while handling meaningful computations internally [26]. For example:

• A function might take just two inputs (narrow interface) but span ten lines of logic (deep
implementation).

• Or a one-liner function might use a complex formula that users shouldn’t need to under-
stand.

But if your function is called n_times_x, and the implementation is just a one-liner doing exactly
that, the abstraction does not help to reduce cognitive load. � As a general rule, a unit’s
interface should be signi}cantly easier to understand than its implementation.

Cohesion

When breaking code into functions, everything inside a unit should be related to its single
responsibility. The unit should:

1. Include all relevant code needed to perform its task.
2. Exclude unrelated logic that belongs elsewhere.

This principle extends to classes, which group related data (attributes) and behaviors (methods).

Data Types Revisited: Classes

Variables store values, like the ingredients from our cupcake recipe. The data referenced by a variable
is always of a certain type:

• Primitive types: Simple values like integers or strings (as discussed in Section 2.2).
• Composite types: Structures like lists and dictionaries that hold multiple values.
• User-de}ned objects: Special-purpose structures de}ned in classes.

# primitive data type: float
x = 4.1083

# composite data type: list
my_list = ["hello", 42, x]

# composite data type: dict
my_dict = {

"key1": "hello",
"key2": 42,
"key3": my_list,

}
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Dictionaries are ~exible but lack structure—}elds can be added, removed, or modi}ed unpredictably.
Classes provide a more controlled way to de}ne related values as part of a single entity. For example,
a Person class ensures that every object has a }rst name, last name, and date of birth:

from datetime import date

class Person:
def __init__(self, first_name: str, last_name: str, date_of_birth: date):

self.first_name = first_name
self.last_name = last_name
if date_of_birth > date.today():

raise ValueError("Date of birth cannot be in the future.")
# this attribute is private (by prefixing _) so that it is not accessed outside of the class
self._date_of_birth = date_of_birth

def get_age(self) -> int:
# code outside the class only gets access to the person's age
today = date.today()
age = today.year - self._date_of_birth.year
if (today.month, today.day) < (self._date_of_birth.month, self._date_of_birth.day):

age -= 1
return age

if __name__ == '__main__':
new_person = Person("Jane", "Doe", date(1988, 5, 20))

Additionally, the methods of a class can control how attributes can be accessed or modi}ed.

A cohesive class is designed to represent one speci}c concept completely—and only that concept. If
a class contains many attributes, and one group of methods uses one subset of those attributes while
another group relies on a dizerent, non-overlapping subset, this suggests the class may be doing too
much. In such cases, it likely no longer adheres to the single responsibility principle and should be
broken into smaller, more focused classes.

Public vs. Private in Classes

For well-structured classes, we should carefully control what is public and what is private:

• Public attributes & methods form the external interface—changing them may break code
elsewhere.

• Private attributes & methods (meant for internal use) may be modi}ed anytime.

Public and private in dizerent languages

Access levels vary by programming language, for example:

• Java has multiple levels (public, protected, package, private).
• Python relies on convention rather than enforcement. Pre}xing names with _ or __ signals
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they are “private”, though they remain accessible.

While Python won’t stop users from accessing private attributes, they do so at their own risk,
knowing these details might change without notice.

Decoupled

Ideally, we want our units to be independent, meaning they should have as few dependencies as
possible on their surroundings. This makes the code easier to understand since each unit can be
comprehended in isolation. But even more importantly, it simpli}es modi}cations: when requirements
change or new features are needed, we want to minimize the number of places that require updates.
In contrast, if code is tightly coupled, a single change in one unit can ripple through multiple parts of
the system, increasing the likelihood of errors.

Rely Only on Public Interfaces

A key principle for writing decoupled code is to only depend on the public interfaces of functions
and classes. This means:

• Avoid accessing private variables.
• Don’t rely on undocumented quirks or unintended behaviors (e.g., a function returning an odd

result when passed values outside its expected range).

If a function’s o{cial interface changes, you’ll likely receive a warning. But if you rely on internal
implementation details, your code becomes fragile—seemingly minor updates in other parts of the
code could break it.

Pure vs. Impure Functions

In addition to dependencies on code de}ned elsewhere, another form of coupling comes from relying
on external resources (like }les, databases, or APIs). These kinds of external dependencies are
eliminated when your units are pure functions [25].

A pure function behaves like a mathematical function ԕ ∶ ԧ → Ԩ, taking inputs ԧ and returning an
output Ԩ—and given the same inputs, the results will be the same every time. Impure functions,
on the other hand, have side ezects—they interact with the outside world, such as reading from or
writing to a }le or modifying global state.

def add(a, b):
# pure: returns a computed result without side effects
return a + b

def write_file(file_path, result):
# impure: writes data to a file (side effect)
with open(file_path, "w") as f:

f.write(result)
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Why favor pure functions?

• They are predictable—calling them with the same inputs always produces the same output.
• They are easy to test since they don’t rely on external state.
• They reduce unexpected behavior, unlike impure functions, which may depend on changing

external factors (e.g., the function may run }ne the }rst time but then crash when trying to
create a }le that already exists or the computed results are suddenly dizerent because in the
meantime other code updated values stored in a database).

That said, impure functions are often necessary—code needs to have an ezect on the outside world,
otherwise why should we execute it in the }rst place? The trick is to encapsulate as much critical
logic as possible in pure functions, keeping side ezects separate:

def pure_function(data):
# process data (pure logic)
result = ...
return result

def impure_function():
with open("some_input.txt") as f:

data = f.read()
result = pure_function(data)
with open("some_output.txt", "w") as f:

f.write(result)

This structure ensures the core logic is pure and testable:

# tests.py
def test_pure_function():

data = "some test data"
result = pure_function(data)
assert result == "some test result"

Dependency Injection for Flexibility

To further decouple your code, use dependency injection: instead of hardcoding dependencies (e.g.,
}le operations, database access), pass them as arguments. This allows functions to remain independent
of speci}c implementations.

Without dependency injection:

class DataSource:
def read(self):

with open("some_input.txt") as f:
return f.read()

def write(self, result):
with open("some_output.txt", "w") as f:
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f.write(result)

def fun_without_di():
# create external dependency inside the function
ds = DataSource()
data = ds.read()
result = ...
ds.write(result)

With dependency injection:

def fun_with_di(ds):
# dependency is passed as an argument
data = ds.read()
result = ...
ds.write(result)

if __name__ == '__main__':
ds = DataSource()
fun_with_di(ds)

Now, fun_with_di only requires an object implementing read and write, but it doesn’t care if it’s a
DataSource or something else that implements the same interface. This makes testing much easier:

# tests.py
class MockDataSource:

def read(self):
return "Mocked test data"

def write(self, result):
self.success = True

def test_fun_with_di():
mock_ds = MockDataSource()
fun_with_di(mock_ds)
assert mock_ds.success

Dependency injection can also be combined with pure functions to make your code testable at
dizerent levels of abstraction.

Anti-Pattern: Global Variables

Besides external resources like }les and databases, another source of tight coupling and error-
prone behavior is relying on global variables. These are de}ned at the script level (often below
import statements) and can be accessed or modi}ed anywhere in the code.

Global variables can introduce temporal coupling, meaning the order of function execution suddenly
matters. This can lead to subtle and hard-to-debug issues:
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PI = 3.14159

def calc_area_impure(r):
# since PI is not defined inside the function, the fallback is to use the global variable
return PI * r**2

def change_pi(new_pi=3):
# `global` is needed; otherwise, this would create a new local variable
global PI
PI = new_pi

if __name__ == '__main__':
r = 5
area_org = calc_area_impure(r)
change_pi()
area_new = calc_area_impure(r)
assert area_org == area_new, "Unexpectedly different results!"

The safer approach is to pass values explicitly:

def calc_area_pure(r, pi):
return pi * r**2

This avoids hidden dependencies and ensures reproducibility.

To prevent unintended global variables, wrap your script logic inside a function:

def main():
# main script code incl. variable definitions
...

if __name__ == '__main__':
main()

This ensures that variables de}ned inside main() don’t leak into the global namespace.

Think you need global variables? Wrap your code inside a class instead!

If multiple functions need to update the same set of variables, consider grouping them into a
class instead of passing the same arguments repeatedly or relying on globals. A class can store
shared state in attributes, accessed via self.

� Call-By-Value vs. Call-By-Reference

Another common pitfall is accidentally modifying function arguments.

Depending on the programming language you use, input arguments are passed:
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• By value: A copy of the data is passed.
• By reference: The function gets access to the original memory location and can modify the

data directly.

Python uses call-by-reference for mutable objects (e.g., lists, dictionaries), which can lead to
unexpected behavior:

def change_list(a_list):
a_list[0] = 42 # modifies the original list
return a_list

if __name__ == '__main__':
my_list = [1, 2, 3]
print(my_list) # [1, 2, 3]
new_list = change_list(my_list)
print(new_list) # [42, 2, 3]
print(my_list) # [42, 2, 3] �

To prevent such side ezects, create a copy of the variable before modifying it. This ensures the original
remains unchanged:

from copy import deepcopy

def change_list(a_list):
a_list = deepcopy(a_list)
a_list[0] = 42
return a_list

if __name__ == '__main__':
my_list = [1, 2, 3]
new_list = change_list(my_list)
print(my_list) # [1, 2, 3] �

To avoid sneaky bugs, test your code to verify:

1. Inputs remain unchanged after execution.
2. The function produces the same output when called twice with identical inputs.

Building with Blocks: Units in Context

By following the strategies outlined in the previous section, your code units should now be well-
structured: each performs a meaningful task, encapsulated behind a simple interface, and avoids
unnecessary dependencies on external resources or volatile implementation details. But does this mean
that when combined, these units automatically form good code? Unfortunately, not necessarily.
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Don’t Repeat Yourself (DRY)

When considering multiple code units in context, a common pitfall is violating the DRY (Don’t
Repeat Yourself) principle. For example, critical business logic—such as computing an evaluation
metric, applying a discount in an e-commerce system, or validating data, like the rules that de}ne an
acceptable password—might be duplicated across several locations. If this logic needs to change (due
to an error or evolving business requirements), you’d need to update multiple places, making your
code harder to maintain and more prone to bugs. Make sure that important values and business rules
are de}ned in a central place, the single source of truth, to avoid inconsistencies and duplication.

The most obvious DRY violation occurs when you catch yourself copy-pasting code—this is a clear
signal to refactor it into a reusable function. However, DRY isn’t just about code; it applies to
anything where a single change in requirements forces multiple updates, including tests,
documentation, or data stored across dizerent databases [31]. To maintain your code ezectively, aim
to make each change in one place only. If that’s not feasible, at least keep related elements close
together—for example, documenting interfaces using docstrings in the code rather than in separate
}les.

Facilitate Reuse

While we want to keep interfaces narrow and simple, we also want our code units to be broadly
applicable. This often means replacing hardcoded values with function arguments. Consider
these two functions:

def a_plus_1(a):
return a + 1

def a_plus_b(a, b=1):
return a + b

The }rst function is highly speci}c, while the second is more general and adaptable. By providing
sensible default values (b=1), we keep the function easy to use while allowing ~exibility for more
advanced cases.

Reusable code through refactoring, not overengineering

Reusable code isn’t typically created on the }rst try because future needs are unpredictable.
Instead of overengineering, focus on writing simple, clear code and adapt it as new opportunities
for reuse emerge. This process, called refactoring, is covered in more detail in Section 5.6.

That said, if your function ends up with ten arguments, reconsider whether it has a single respon-
sibility. If it’s doing too much, breaking it into multiple functions is likely a better approach.
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Polymorphism

When working with classes, reuse can be achieved through polymorphism, where multiple classes
implement the same interface and can be used interchangeably. We’ve already applied this principle
when we used MockDataStorage instead of DataStorage for testing. This approach can be useful in
research code as well, for example, you could de}ne a Model interface with fit and predict methods
so multiple models can share the same experiment logic:

class Model:
def fit(self, x, y):

raise NotImplementedError
def predict(self, x):

raise NotImplementedError

class MyModel(Model):
def fit(self, x, y):

... # implementation
def predict(self, x):

y_pred = ...
return y_pred

def run_experiment(model: Model):
# this code works with any model that implements
# appropriate fit and predict functions
x_train, y_train = ...
model.fit(x_train, y_train)
x_test = ...
y_test_pred = model.predict(x_test)

if __name__ == '__main__':
# create a specific model (possibly based on arguments passed by the user)
model = MyModel()
run_experiment(model)

This way you can reuse your analysis code with all your models, which not only avoids redundancy,
but ensure that all models are evaluated consistently.

Mixins

Another approach to reuse is using mixins, small reusable classes that provide additional functional-
ity:

import numpy as np

class ScoredModelMixin:
def score(self, x, y):

y_pred = self.predict(x)
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return np.mean((y - y_pred)**2)

class MyModel(Model, ScoredModelMixin):
...

if __name__ == '__main__':
model = MyModel()
# this uses the function implemented in ScoredModelMixin
print(model.score(np.random.randn(5, 3), np.random.randn(5)))

Historically, deep class hierarchies with multiple levels of inheritance were common, but they often led
to unnecessary complexity. Instead of forcing all functionality into a single class hierarchy, it’s better
to keep interfaces narrow and compose functionality from multiple small, focused classes.

Summary: From Working to Good Code

With these best practices in mind, revisit the steps you outlined when working backward from your
desired output (in our case a plot) to the necessary inputs (data):

1. Group related steps into reusable functions. Functions like load_data, fit_model,
predict_with_model, and compute_r2 help structure your code and prevent redundancy (DRY
principle).

2. Identify explicit and implicit inputs and outputs:

• Inputs: Passed as function arguments or read from external sources (}les, databases,
APIs—but avoid global variables!).

• Outputs: Return values or data written to an external source (and other side ezects, like
modifying input arguments).

3. Extract pure functions, which use only explicit inputs (arguments) and outputs (return
values), from functions that rely on external resources or have other side ezects. For example, if
load_data includes both }le I/O and preprocessing, separate out preprocess as a pure function
to improve testability. Additionally, consider opportunities for dependency injection.

4. Encapsulate related variables and functions into classes:

• Look for multiple variables describing the same object (e.g., parameters describing
a Model instance).

• Identify functions that need access to private attributes or should update attributes
in-place (e.g., fit and predict should be methods of Model).

5. Generalize where possible:

• Should hardcoded values be passed as function arguments?
• Could multiple classes implement a uni}ed interface? For example, dizerent model classes

should all implement the same fit and predict methods so they can be used with the
same analysis code.

6. Organize your code into modules when it grows too large:
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• Keep closely related functions together (e.g., load_data and preprocess, which can be
expected to change together).

• Place logically grouped }les into separate directories (e.g., models/ for dizerent model
implementations).

By following these steps, you’ll create code that is not only functional but also maintainable and
extensible. However, avoid overengineering by trying to predict every possible future requirement.
Instead, keep your code as simple as possible and refactor it as actual needs evolve.

3.4. Draw Your Code

To summarize the overall design, we can create sketches that serve as both a high-level overview and
an implementation guide. While formal modeling languages like UML exist for this purpose, don’t
feel pressured to use them—these diagrams are for you and your collaborators, so prioritize clarity
over formality. Unless they’re part of o{cial documentation that must meet speci}c standards, a
quick whiteboard sketch is often a better use of your time.

We distinguish between two types of diagrams:

1. Structural Diagrams – These show the organization of your code: which functions and classes
are in which modules, and how they depend on one another.

2. Behavioral Diagrams – These describe how your program runs: how inputs ~ow through the
system and are transformed into outputs.

Structure: Your Personal Code Library

Our }rst sketch provides an overview of the reusable functions and classes we assembled in the
previous section (Figure 3.12). This collection forms your personal code library, which you can
reuse not just for this project but for future ones as well.

Behavior: Mapping Out Your Script

Our second sketch outlines the script you’ll execute to create the results you want, which builds
upon these components (Figure 3.13). When designing the ~ow of your script, consider:

• How the script is triggered – Does it take command-line arguments? What inputs does it
require?

• What the }nal output should be – A results plot? A summary table? Something else?
• Which intermediate results should be saved – If your script crashes, you don’t want to

start over. Since variables in memory disappear when the script terminates, consider saving key
outputs to disk at logical checkpoints.

• Which functions and classes from your library are used at each step – Also, note any
external resources (e.g., }les, databases, or APIs) they interact with.
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Figure 3.12.: The dizerent functions and classes in our personal library, a collection of reusable units
that can serve us in multiple projects. They are organized in dizerent }les and folders
to keep related code close together. Green boxes represent pure functions, purple boxes
impure functions with side ezects (like reading or writing to external }les), and blue
boxes class methods. For classes (like MyModel) that extend another class (Model), only
the additional attributes and methods are listed for that class. The arrows indicate
dependencies.
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Figure 3.13.: The full ~ow of your script, including external resources and reusable functions. If you
want, you can omit the lower level function calls as these are already covered in our
library diagram. The code to create a new model should create models of dizerent types
depending on the con}guration parameters passed when calling the script so you can use
the same script for multiple experiments.

Before you continue

At this point, you should have a clear understanding of:

• The inputs and steps required to produce your desired outputs—what constitutes working
code.

• How to structure this code into good code by creating cohesive, decoupled, and reusable
units that use simple interfaces to abstract away complicated implementation details.
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Writing Code
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Now that you’ve gained clarity on your concept, it’s }nally time to write code (Figure 3.14).

Figure 3.14.: It’s }nally time to implement your solution—while following some best practices.

This part starts with an introduction to some tools that will help you develop software more e{-
ciently (Chapter 4). Next, you’ll learn about the best practices you should follow during the actual
implementation (Chapter 5). We’ll close with an outlook on what it takes to go from research to
production-grade software (Chapter 6).

Although the code examples in this book use Python, the general principles discussed here apply to
most programming languages.
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Let’s start with a quick tour of some tools that can make your software engineering journey smoother.

4.1. Programming Languages

Dizerent programming languages suit dizerent needs. Here’s a quick overview of some popular ones
used in science and engineering:

• R: Commonly used for statistics, with rich functionality to create data visualizations, }t sta-
tistical models (like dizerent types of regression), and conduct advanced statistical tests (like
ANOVA). The poplar Shiny framework also makes it possible to create interactive dashboards
that run as web applications.

• MATLAB: Once dominant in engineering, used for simulations. But due to its high licensing
costs, MATLAB is being replaced more and more by Python and Julia.

• Julia: Gaining traction in scienti}c computing for its speed and modern syntax.
• Python: A versatile language with strong support for data science, AI, web development, and

more. Its active open source community has created many popular libraries for scienti}c comput-
ing (numpy, scipy), machine learning (scikit-learn, TensorFlow, PyTorch), and web development
(FastAPI, streamlit).

Due to its broad applicability and popularity in industry, Python is used for the examples in this book.
However, you should choose the programming language that is most popular in your }eld
as this will make it easier for you to }nd relevant resources (e.g., tailored libraries) and collaborate
with colleagues.

There are plenty of great books and other resources available to teach you programming fundamentals,
which is why this book focuses on higher level concepts. Going forward we’ll assume that you’re familiar
with the basic syntax and functionality of your programming language of choice (incl. key scienti}c
libraries). For example, to learn Python essentials, you can work through this tutorial.

4.2. Version Control

Version control is a system used to track and record changes to }les over time, like a time machine
that lets you revert to any version of your code or examine how it evolved. Version control is essential
in software development to keep track of code changes and collaborate ezectively.
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Why Use Version Control?

• Track changes: See what you’ve modi}ed and when, with the ability to revert if necessary.
• Review collaborators’ changes: When working with others, reviewing their changes before

they are merged with the main version of the code (in so-called pull or merge requests) ensures
quality and provides opportunities to teach each other better ways of doing things.

• Not just for code: Version control can be used for any kind of }le. While it’s less ezective
for binary formats like images or Microsoft Word documents where you can’t create a clean
“diz” between two versions, you should de}nitely give it a try when writing your next paper in
a text-based format like LaTeX.

Git

The go-to tool for version control is Git. While desktop clients exist, you can also use git directly in
the terminal as a command line tool.

If you’re new to Git, this beginner’s guide is a great place to start.

Essential git commands

• git init: Start a new repository in the current folder.
• git status: View changes.
• git diff: View dizerences between }le versions before committing.
• git add [file]: Stage }les for a commit.
• git commit -m "message": Save staged changes.
• git push: Upload changes to a remote repository (e.g., on GitHub).
• git pull: Download changes from a remote repository.
• git branch: Create or list branches.
• git checkout [branch]: Switch branches.
• git merge [branch]: Combine branches.

By default, your repository’s }les are on the main branch. Creating a new branch is like stepping
into an alternate universe where you can experiment without azecting the main timeline. When
making a major change or adding a new feature, it’s good practice to create a new branch, like
new-feature, and implement your changes there. Once you’re satis}ed with the result, you can merge
the changes back into the main branch.

This approach keeps the main branch stable and ensures you always have a working version of your
code. If you decide against your new feature, you can simply abandon the branch and start fresh
from main. By creating a merge request (MR) once your new-feature branch is ready, you or a
collaborator can review the changes thoroughly before merging them into main.

To publish your code or collaborate with others, your repository (i.e., the folder under version
control) can be hosted on a platform like:

• GitHub: Great for open-source projects and public personal repositories to show oz your skills.
• GitLab: Supports self-hosting, making it ideal for organizational needs.
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4.3. Development Environment

We strongly encourage you to publish any code related to your publications on one of these platforms
to promote reproducibility of your results! � �

Data versioning

In addition to the changes made to your code, you should also keep track of how your data is
generated and transformed over time (data lineage). While small datasets can be included in
your repository (e.g., in a separate data/ folder), there are also more tailored tools available
speci}cally to version your data, like DVC.

4.3. Development Environment

The program you choose for writing code directly impacts your productivity. While you can technically
write code using a plain text editor (like Notepad on Windows or TextEdit on macOS), special-
purpose text editors and integrated development environments (IDEs) provide a tailored
experience that boosts productivity.

Text Editors

Developer-focused text editors are lightweight tools with features like syntax highlighting and exten-
sions for basic programming tasks.
Examples include:

• Sublime Text: Lightweight and fast, with excellent customization through lots of plugins.
• Atom: Open-source and backed by GitHub (though less popular than other tools).
• Vim and Emacs: Some of the }rst code editors, often used as command line tools and beloved

by keyboard shortcuts enthusiasts.

Terminal

When you write code in a text editor, you need a way to execute it. This is where the terminal
comes in. A terminal, or console, lets you interact with your computer through the command line,
using text-based commands. Think of it like stepping back to the 1970s—or like being one of those
cool hackers you see on TV.

On macOS and Linux, a terminal app is already preinstalled. On Windows, dizerent options exist
to install a Unix-like terminal, like the Windows Terminal. Inside the terminal, there’s a shell: the
actual program that processes the commands you type. The most common shells on Unix systems are
bash and zsh, which are quite similar. For this book, we’ll assume you’re using one of these.

With the shell, you can navigate your computer’s }le system and run programs through their command-
line interface (CLI). Try it out!
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Basic shell commands

Follow along by typing these commands into your terminal. In parallel, you can watch your
normal }le browser to see }les and folders appear or disappear as you go.

• pwd: Print the current working directory—this shows the path to where you opened the
terminal.

• ls: List }les and directories in the current location. Use ls -la for more details, including
hidden }les (like .gitignore).

• cd path/to/folder: Change directory to the speci}ed path. Tips: Use tab to autocom-
plete names. If the path starts with /, it’s absolute (from the }le system’s root). If it starts
with ~/, it’s relative to your home directory. Use .. to move up one folder.

• mkdir new_folder: Create a new directory named new_folder.
• touch new_file.txt: Create an empty }le named new_file.txt.
• cp new_file.txt copied_file.txt: Copy new_file.txt to copied_file.txt. Use mv

instead of cp to move or rename }les.
• rm new_file.txt: Delete new_file.txt. Add -r to delete directories. But be careful: }les

deleted this way bypass the trash and are gone for good, so double-check before hitting
enter!

You can also run other CLI programs in the terminal, like using the git commands described
earlier.
A Python script can be executed with python script.py (assuming the script is in your current
directory).

Not all CLI programs mentioned in this book will be preinstalled on your machine. Linux systems
already come with a command-line package manager (like apt on Ubuntu), which can be used to
install other tools. A popular package manager for macOS is brew, while for Windows you can use
winget.

Once you get comfortable with your shell, you can also create shell scripts (}les with a .sh extension)
to automate tasks and handle more complex work~ows. These scripts can include conditionals, loops,
and other programming constructs. For more information on bash scripting, check out this resource
and read the }rst few chapters of the book Research Software Engineering with Python [16].

Integrated Development Environments (IDEs)

Full IDEs combine all the tools you need in one place—}le browser, editor, terminal, Git support,
debugger, and more. They are ideal for larger projects and provide support for more complex tasks,
like renaming variables across multiple }les when you’re refactoring code.
Examples include:

• VS Code: Minimalist by default but highly customizable with plugins, making it suitable for
everything from basic editing to full-scale development.

• JetBrains IDEs (e.g., PyCharm): IDEs tailored to the needs of speci}c programming languages
with very advanced features. You need to purchase a license to use the full version, but for many
IDEs there is also a free community edition available.
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4.4. Reproducible Setups

• JupyterLab: An extension of Jupyter notebooks (see below), popular for data science and
exploratory coding.

• RStudio: Tailored for R programming, with excellent support for data visualization, markdown
reporting, and reproducible research work~ows.

• MATLAB: The MATLAB programming language and IDE are virtually synonymous. However,
its rich feature set comes with steep licensing fees.

Jupyter Notebooks

Jupyter notebooks are a unique format that lets you mix code, output (like plots), and ex-
planatory text in one document. The name Jupyter is derived from Julia, Python, and R, the
programming languages for which the notebook format, and later the JupyterLab IDE, were created.
The IDE itself runs inside your web browser.

Notebooks are great for exploratory data analysis and to create reproducible reports. However, since
the notebooks themselves are composed of individual interactive cells that can be executed in any
order, developing in notebooks often becomes messy quickly. We recommend that you keep the main
logic and reusable functions in separate scrips or libraries and primarily use notebooks to create plots
and other results. It is also good practice once you’re }nished to restart the kernel and run your
notebook again from top to bottom to make sure everything still works and you’re not relying on
variables that were de}ned in now-deleted cells, for example.

Notebooks as text }les

Jupyter notebooks, stored as }les ending in .ipynb, are internally represented as JSON doc-
uments. If you have your notebooks under version control (which you should �), you’ll notice
that the dizs between versions look quite bloated. But do not despair! Tools like Jupytext can
convert notebooks into plain text without loss of functionality.

Parameterize notebooks

If you want to execute the same notebook with multiple dizerent parameter settings (e.g., create
the same plots for dizerent model con}gurations), have a look at papermill.

In addition to the original JupyterLab IDE and notebooks that you install on your computer, there
are also free cloud-based options available, such as Google Colab, which even gives you free compute
time on GPUs.

4.4. Reproducible Setups

“It works on my machine” isn’t good enough for science. Reproducibility means your results can be
replicated by others (and by you a few months later when the reviewers of your paper request changes
to your experiments). The }rst step to achieve this is to manage your dependencies (i.e., external
libraries used by your code) to ensure the environment in which your code is executed is identical for
everyone that runs your code, every time. This can be done using virtual environments, or, if you
want to go even further, containers like Docker, which will be discussed in Chapter 6.
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4. Tools

Virtual environments in Python with uv

Virtual environments isolate your project’s dependencies, thereby ensuring consistency. For
Python, a common tool to do this is uv. It tracks the libraries and their versions in a
pyproject.toml }le like this:

[project]
name = "example-project"
version = "0.1.0"
description = "A sample Python project"
authors = [{name="Your Name", email="youremail@example.com"}"]
requires-python = ">=3.10"
dependencies = [

"matplotlib >=3.7.2",
"numpy >=1.22.3,<2",

]

Basic commands:

• uv init example-project: Create a new project (folder incl. pyproject.toml }le).
• uv add {package}: Add a dependency (can also be done directly in the }le).
• uv sync: Install all dependencies.
• uv run python script.py: Run a Python script inside the virtual environment.

Handling Randomness

Your program will often depend on randomly sampled values, for example, when de}ning the initial
conditions for a simulation or initializing a model before it is }tted to data (like a neural network). To
ensure that your experiments can be reproduced, it is important that you always set a random seed
at the beginning of your program so the random number generator starts from a consistent state.

Setting random seeds in Python

At the beginning of your script, set a random seed (depending on the library that you’re using
this can vary):

import random
import numpy as np

random.seed(42)
np.random.seed(42)

To get a better idea of how much your results depend on the random initialization and therefore
how robust they are, it is advisable to always run your code with multiple random seeds and
compare the results (e.g., compute the mean and standard deviation of the outcomes of dizerent
runs like in Figure 2.12).
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4.5. Clean and Consistent Code

Random state at startup

Depending on the programming language that you’re using, if you run a script without executing
any other code before, the random number generator may or may not always start in the same
state. This means, if you don’t set a random seed and, for example, run your script ten times
from scratch, you may always receive the same result even though the results would dizer if the
code was run under dizerent circumstances. To avoid surprises, you should always explicitly set
the random seed to have more control over the results.

Hardware dizerences

If your code is run on very dizerent hardware, e.g., a CPU vs. a GPU (graphics card, used to
train neural network models, for example), despite setting a random seed, your results might still
dizer slightly. This is due to how the dizerent architectures internally represent ~oat values, i.e.,
with what precision the numbers are stored in memory.

4.5. Clean and Consistent Code

Especially when working together with others, it can be helpful to follow to a style guide to
produce clean and consistent code. Google published their style guides for multiple programming
languages, which is a great resource and adhering to these rules will also help you to avoid common
sources of bugs.

Formatters & Linters

Since programmers are often rather lazy, they developed tools that automatically }x your code to
implement these rules where possible:

• Formatters rewrite code to follow a consistent style (e.g., add whitespace after commas).
• Linters analyze code for errors, ine{ciencies, and deviations from best practices.

Formatter & Linter in Python: ruff

ruff is a (super fast) formatter and linter for Python, written in Rust. You can install it via pip
and con}gure it in the same pyproject.toml }le that we also used to manage the dependencies
of our project. Then run it over you code like this:

ruff check # see which errors the linter finds
ruff check --fix # automatically fix errors where possible
ruff format # automatically format the code

You’ll probably want to add exceptions for some of the errors that the linter checks for in your
pyproject.toml }le as ruff is quite strict. �
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It is important to have the con}guration for your formatter and linter under version control as well,
so that all collaborators use the same settings and you avoid unnecessary changes (and bloated dizs
in merge requests) when dizerent people format the code.

Pre-commit Hooks

In the heat of the moment, you might forget to run the formatter and linter over your code before
committing your changes. To avoid accidentally checking messy code into your repository,
you can con}gure so-called “pre-commit hooks”. Pre-commit hooks catch issues automatically by
enforcing coding standards before committing or pushing code with git.

Setting up pre-commit hooks

First, you need to install pre-commit hooks, e.g., through Python’s package manger pip:

pip install pre-commit

Then con}gure it in a }le named .pre-commit-config.yaml (here done for ruff):

repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v2.3.0
hooks:

- id: check-yaml
- id: end-of-file-fixer
- id: trailing-whitespace

- repo: https://github.com/astral-sh/ruff-pre-commit
# Ruff version.
rev: v0.8.3
hooks:

# Run the linter.
- id: ruff
args: [ --fix ]

# Run the formatter.
- id: ruff-format

Then install the git hook scripts from the con}g }le:

pre-commit install

Now the con}gured hooks will be run on all changed }les when you try to commit them and you
can only proceed if all checks pass.

To catch any style inconsistencies after the code was pushed to your remote repository (e.g., in case
one of your collaborators has not installed the pre-commit hooks), you can also add these checks to
your CI/CD pipeline (see Chapter 6).
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4.6. Putting It All Together

4.6. Putting It All Together

When you set up all these tools, your repository should now look something like this (see here for
more details; setup for programming languages other than Python will dizer slightly):

project-name/
��� .gitignore # Exclude unnecessary files from version control
��� README.md # Describe the project purpose and usage
��� pre-commit-config.yaml # Pre-commit hook setup
��� pyproject.toml # Python dependencies and configs
��� data/ # Store (small) datasets
��� notebooks/ # For exploratory analysis
��� src/ # Core source code
��� tests/ # Unit tests

A clean project structure makes it easier to maintain your code.

Before you continue

At this point, you should have a clear understanding of:

• How to set up your development environment to code e{ciently.
• How to host your version-controlled repository on a platform like GitHub or GitLab, com-

plete with pre-commit hooks to ensure well-formatted code.
• The fundamental syntax of your programming language of choice (incl. key scienti}c li-

braries) to get started.

If you want to gain a deeper understanding of many of the tools mentioned here, along with additional
techniques, have a look at the book Research Software Engineering with Python [16].
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5. Implementation

Armed with the right tools and a solid concept, it’s time to start coding. In this chapter we’ll discuss
some best practices to ensure your idea does not only look good on paper.

5.1. Make a Plan

Seeing your software design mapped out in full can feel overwhelming—there’s so much to do! That’s
why it’s important to break the implementation process into small, manageable tasks. Rather
than getting stuck in the details, start by implementing the full end-to-end ~ow. Once that’s
in place, you can re}ne individual models, tweak data processing steps, or make plots prettier.

Minimum Viable Results

In product development, there’s a concept called the Minimum Viable Product (MVP). This
refers to the simplest version of a product that still provides value to users. The MVP serves as
a prototype to gather feedback on whether the product meets user needs and to identify which
features are truly essential. By iterating quickly and testing hypotheses, teams can increase the
odds of creating a successful product that people will actually pay for.
This approach also has motivational bene}ts. Seeing something functional—even if basic—early
on makes it easier to stay engaged. It’s far better than toiling for months without tangible results.
You should apply the same mindset to your research software development by starting with a
script that generates “Minimum Viable Results.”
This means creating a program that produces outputs resembling your }nal results, like plots or
tables, but using placeholder data instead of actual values. For instance:

• If your goal is to build a prediction model, start with one that simply predicts the mean
of the observed data.

• If you’re developing a simulation, begin with random outputs, such as a random walk.

By starting with Minimum Viable Results, you can test your code end-to-end early on, see
tangible progress, and iteratively improve from there.
This approach also serves as a “stupid baseline”—a simple, easy-to-beat reference point for
your }nal method. It’s a sanity check: if your sophisticated model can’t outperform a baseline
that always predicts the mean, something’s oz.

To organize implementation steps and track progress, consider using a Kanban board, a tool com-
monly used in project management. Software like Trello, Notion, or Linear can help you create Kanban
boards, where you can describe tasks in more detail (e.g., adding sketches of the plots you want to
generate) compared to a simple to-do list.
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5.2. From Concept to Code: Fill in the Blanks

Using your software design from Chapter 3, you can now translate your sketch into a code
skeleton. Start by outlining the functions, place calls to them where needed, and add comments for
any steps you’ll }gure out later. For example, the design from Figure 3.13 could result in the following
draft:

import numpy as np
import pandas as pd

class MyModel:
def __init__(self, param1):

self.param1 = param1

def fit(self, x, y):
pass

def predict(self, x):
y = ...
return y

def preprocess(df):
df = ...
return df

def load_data(file_name):
df = pd.read_csv(file_name)
df = preprocess(df)
return df

def compute_r2(y, y_pred):
r2 = ...
return r2

def evaluate_plot(y, y_pred):
r2 = compute_r2(y, y_pred)
# ... create and save plot ...
return r2

def main(model):
df_train = load_data("train.csv")
model.fit(df_train.x, df_train.y)
df_test = load_data("test.csv")
y_pred = model.predict(df_test.x)
r2 = evaluate_plot(df_test.y, y_pred)

if __name__ == '__main__':
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# script is called as `python script.py seed param1 [param2]`
seed, param1, param2 = ...
np.random.seed(seed)
# TODO: check which type of model should be created (mine or baseline)
model = MyModel(param1)
main(model)

Order of functions

Your script likely includes multiple functions, so you’ll need to decide their order from top to
bottom. Since scripts typically start with imports (e.g., of libraries like numpy) and end with a
main function, personally I prefer to put more general functions (i.e., the ones that are at the
lower levels of abstraction in your call hierarchy and that only rely on external dependencies)
towards the top of the }le. This ensures that, as you read the script from top to bottom, each
function depends only on what was de}ned before it. Maintaining this order avoids
circular dependencies and encourages you to write reusable, modular functions that serve as
building blocks for the code that follows.

Once your skeleton stands, you “only” need to }ll in the details, which is a lot less intimidating
than facing a blank page. Plus, since you started with a thoughtful design, your }nal program is more
likely to be well-structured and easy to understand. Compare this to writing code on the ~y, where
decisions about functions are often made haphazardly—you’ll appreciate the dizerence.

Using AI code generators

AI assistants like ChatGPT, Claude, or GitHub Copilot can be helpful tools when writing code,
especially at the level of individual functions. However, remember that these tools only reproduce
patterns from their training data, which includes both good and bad code. As a result, the code
they generate may not always be optimal. For instance, they might use ine{cient for-loops
instead of more elegant matrix operations. Similarly, support for less popular programming
languages may be subpar.
To get better results, consider crafting prompts like: “You are a senior Python developer with
10 years of experience writing e{cient, edge-case-aware code. Write a function …”

Keep It Compact

When writing code, aim to achieve your goals while using as little screen space as possible—this
applies to both the number of lines and their length.

Tips to create compact, reusable code

• Avoid duplication: Instead of copying and pasting code in multiple places, consolidate
it into a reusable function to save lines (DRY principle).

• Prefer ‘deep’ functions: Avoid extracting very short code fragments (1-2 lines) into a
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separate function, especially if this function would require many arguments. Such shallow
functions with wide interfaces increase complexity without meaningfully reducing line count.
Instead, strive for deep functions (spanning multiple lines) with narrow interfaces (e.g., only
1-3 input arguments, i.e., fewer arguments than the function has lines of code),
which tend to be more general and reusable [26].

• Address nesting: If your code becomes overly nested, this can be a sign that parts of the
code should be moved into a separate function. This simpli}es logic and shortens lines.

• Use guard clauses: Deeply nested if-statements can make code harder to read. Instead,
use guard clauses [2] to handle preconditions (e.g., checking for wrong user input) early,
leaving the “happy path” clear and concise. For example:

if condition:
if not other_condition:

# do something
return result

else:
return None

Can be refactored into:

if not condition:
return None

if other_condition:
return None

# do something
return result

This approach reduces nesting and improves readability.

Breaking Code into Modules

Starting a new project often begins with all your code in a single script or notebook. This is }ne
for quick and small tasks, but as your project grows, keeping everything in one }le becomes messy
and overwhelming. To keep your code organized and easier to understand, it’s a good idea to move
functionality into separate }les, also called (sub)modules. Separating code into modules makes your
project easier to navigate and can lay the foundation for your own library of reusable functions
and classes, useful across multiple projects.

A typical }rst step is splitting the main logic of your analysis (main.py) from general-purpose helper
functions (utils.py). Over time, as utils.py expands, you’ll notice clusters of related functionality
that can be moved into their own }les, such as data_utils.py, models.py, or results.py. To
create cohesive modules, you should group code that tends to change together, which increases
maintainability as you don’t need to switch between }les when implementing a new feature. Modules
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based on domains or use cases, instead of technical layers, are therefore preferred, as the changes
required to implement a new feature are generally limited to a single domain [23].

This approach naturally leads to a clean directory structure, which might look like this for a larger
Python project:1

src/
��� main.py
��� my_library/

��� __init__.py
��� data_utils.py
��� models/
� ��� __init__.py
� ��� baseline_a.py
� ��� baseline_b.py
� ��� interface.py
� ��� my_model.py
��� results.py

In main.py, you can import the relevant classes and functions from these modules to keep the main
script clean and focused:

from my_library.models.my_model import MyModel
from my_library.data_utils import load_data

if __name__ == '__main__':
# steps that will be executed when running `python main.py`
model = MyModel()

Keep helper functions separate

Always separate reusable helper functions from the main executable code. This also
means that }les like data_utils.py should not include a main function, as they are not stan-
dalone scripts. Instead, these modules provide functionality that can be imported by other
scripts—just like external libraries such as numpy.

As you tackle more projects, you may develop a set of functions that are so versatile and useful that
you }nd yourself reusing them across multiple projects. At that point, you might consider packaging
them as your own open-source library, allowing other researchers to install and use them as well.

5.3. Documentation & Comments: A Note to Your Future Self

While you write it, everything seems obvious. However, when revisiting your code a few months later
(e.g., to try a dizerent experiment), you’re often left wondering what the heck you were doing. This is

1The __init__.py }le is needed to turn a directory into a package from which other scripts can import functionality.
Usually, the }le is completely empty.
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especially true when some external constraint (like a library quirk) forced you to create a workaround
instead of opting for the straightforward solution. When returning to such code, you might be tempted
to replace the awkward implementation with something more elegant, only to rediscover why you chose
that approach in the }rst place. This is where comments can save you some trouble. And they are
even more important when collaborating with others who need to understand your code.

We distinguish between documentation and comments: Documentation provides the general de-
scription of when and how to use your code, such as function docstrings explaining what the
function computes, its input arguments, and return values. This is particularly important for open
source libraries where you can’t personally explain the code’s purpose and usage to others. Com-
ments help developers understand why your code was written in a certain way, like explaining
that unintuitive workaround. Additionally, for scienti}c code, you may also need to document the
origin of certain values or equations by referencing the corresponding paper in the comments.

Code should be self-documenting

Ideally, your code should be written so clearly that it’s self-explanatory. Comments shouldn’t
explain what the code does, only why it does that (when not obvious). Comments and doc-
umentation, like code, need to be maintained—if you modify code, you need to update
the corresponding comments or they become misleading and harmful rather than helpful. Using
comments sparingly minimizes the risk of confusing, outdated comments.
Informative variable and function names are essential for self-explanatory code. When you’re
tempted to write a comment that summarizes what the following block of code does (e.g., #
preprocess data), consider moving these lines into a separate function with an infor-
mative name, especially if they contain signi}cant, reusable logic.

Naming Is Hard

There are only two hard things in Computer Science: cache invalidation and naming things.
– Phil Karlton2

Finding informative names for variables, functions, and classes can be challenging, but good names
are crucial to make the code easier to understand for you and your collaborators.

Tips for ezective naming

• Names should reveal intent. Longer names (consisting of multiple words in snake_case
or camelCase, depending on the conventions of your chosen programming language) are
usually better. However, stick to domain conventions—if everyone understands X and
y as feature matrix and target vector, use these despite common advice denouncing single
letter names.

• Be consistent: similar names should indicate similar things. This makes it easier to
recognize patterns and extrapolate what you’ve learned about one implementation (e.g.,
BaselineAModel) to others (e.g., BaselineBModel), which reduces the mental ezort
required to understand the code [22]. On the other hand, if you name two things

2https://martinfowler.com/bliki/TwoHardThings.html
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similarly even though they behave dizerently, this increases the cognitive load as you need
to explicitly memorize this exception.

• Avoid reserved keywords (i.e., words your code editor colors dizerently, like Python’s
input function).

• Use verbs for functions, nouns for classes.
• Use a{rmative phrases for booleans (e.g., is_visible instead of is_invisible).
• Use plurals for collections (e.g., cats instead of list_of_cats).
• Avoid encoding types in names (e.g., sample_array), since if you decide to change

the data type later, you either need to rename the variable everywhere or the name is now
misleading.

5.4. Tests: Protect What You Love

We all want our code to be correct. During development, we often verify this manually by running
the code with example inputs to check if the output matches our expectations. While this approach
helps ensure correctness initially, it becomes cumbersome to recreate these test cases later when the
code needs changes. The simple solution? Package your manual tests into a reusable test suite
that you can run anytime to check your code for errors.

Tests typically use assert statements to con}rm that the actual output matches the expected output.
For example:

def add(x, y):
return x + y

def test_add():
# verify correctness with examples, including edge cases
# syntax: assert (expression that should evaluate to True), "error message"
assert add(2, 2) == 4, "2 + 2 should equal 4"
assert add(5, -6) == -1, "5 - 6 should equal -1"
assert add(-2, 10.6) == 8.6, "-2 + 10.6 should equal 8.6"
assert add(0, 0) == 0, "0 + 0 should equal 0"

Testing in Python with pytest

Consider using the pytest framework for your Python tests. Organize all your test scripts in a
dedicated tests/ folder to keep them separate from the main source code.

As discussed in Chapter 3, pure functions—those without side ezects like reading or writing external
}les—are especially easy to test because you can directly supply the necessary inputs. Placing your
main logic into pure functions therefore simpli}es testing the critical parts of your code. For impure
functions, such as those interacting with databases or APIs, you can use techniques like mocking to
simulate external resources, ideally combined with dependency injection.

When designing your tests, focus on edge cases—unusual or extreme scenarios like values outside the
normal range or invalid inputs (e.g., dividing by zero or passing an empty list). The more thorough
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your tests, the more con}dent you can be in your code. Each time you make signi}cant changes, run
all your tests to ensure the code still behaves as expected.

Some developers even adopt Test-Driven Development (TDD), where they write tests before the
actual code. The process begins with writing tests that fail (or don’t even compile), then creating
the code to make them pass. TDD can be highly motivating as it provides clear goals, but it requires
discipline and may not always be practical in the early stages of development when function de}nitions
are still evolving.

Testing at dizerent levels

Ideally, you’ll test your software at all levels:

• Unit Tests: Test individual units (e.g., single functions) to verify basic logic. These should
make up the bulk of your test code.

• Integration/System Tests: Check that dizerent parts of the system work together as
expected. These often require more complex setups, like running multiple services at the
same time, to test the ~ow end-to-end.

• Manual Testing: Identify unexpected behavior or overlooked edge cases. Whenever a
bug is found, create an automated test to reproduce it and prevent regression.

• User Testing: Evaluate the user interface (UI) with real users to ensure clarity and
usability. UX designers often perform these tests using design mockups before coding
begins.

Debugging

When your code doesn’t work as intended, you’ll need to debug—systematically identify and }x
the problem. Debugging becomes easier if your code is organized into small, testable functions
covered by unit tests. These tests often help narrow down the source of the issue. If your existing
tests didn’t catch the bug, }rst write a new, failing test to reproduce it before }xing it. This
con}rms your }x works and prevents a regression—meaning the bug won’t sneak back into the code
later.

To isolate the exact line causing the error:

• Use print statements to log variable values at key points and understand the program’s ~ow.
• Add assert statements to verify intermediate results.
• Use a debugger, often integrated into your IDE, to set breakpoints where execution will pause,

allowing you to step through the program manually and inspect variables.

Debugging is an essential skill, not only to identify the root cause of bugs, but also to improve your
understanding of the code and its behavior.
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5.5. Make It Fast

Make it run, make it right, make it fast.
– Kent Beck (or rather his dad, Douglas Kent Beck3)

Now that your code works and produces the right results (as you’ve dutifully con}rmed with thorough
testing), it’s time to think about performance.

Readability over performance

Always prioritize writing code that’s easy to understand. Performance optimizations
should not come at the cost of readability. More time is spent by humans reading and maintaining
code than machines executing it.

Find and }x the bottlenecks

Instead of randomly trying to speed up everything, focus on the parts of your code that are actually
slow. A simple way to identify bottlenecks is to insert log statements with timestamps at key points
in your code to measure the time elapsed between steps. And if you manually interrupt a (Python)
script during a long run and it always stops in the same place, that’s also often an indication that this
step could be the issue. For a more systematic approach, use a pro}ler. Pro}lers analyze your code
and show you how much time each part takes, helping you decide where to focus your ezorts.

Accessing }les on disk or fetching data over the network is one of the slowest operations in
most programs. Whenever possible, cache the results by storing the loaded data in memory to avoid
repeated access to external resources. Just be mindful of how frequently the external data changes
and invalidate the cache when the information becomes outdated.

Run it in the cloud

Working with large datasets may trigger Out of Memory errors as your computer runs out of
RAM. While optimizing your code can help, sometimes the quickest solution is to run it on a
larger machine in the cloud. Platforms like AWS, Google Cloud, Azure, or your institution’s
own compute cluster make this cost-ezective and accessible. That said, always look for simple
performance improvements }rst!

Think About Big O

Some computations have unavoidable limits. For example, }nding the maximum value in an unsorted
list requires checking every item—there is no way around this. The “Big O” notation is used to
describe these limits, helping you understand how your code scales as data grows (both in terms of
execution time and required memory).

• Constant time (෮(1)): Independent of dataset size (e.g., looking up a key in a dictionary).
• Linear time (෮(ԝ)): Grows proportionally to data size (e.g., }nding the maximum in a list).

3https://x.com/KentBeck/status/704385198301904896
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• Problematic growth (e.g., ෮(ԝ3) or ෮(2։)): Polynomial or exponential scaling can make
algorithms impractical for large datasets.

When developing a novel algorithm, you should examine its scaling behavior both theoretically
(e.g., using proofs) and empirically (e.g., timing it on datasets of dizerent sizes). Designing
a more e{cient algorithm is a major achievement in computational research!

Divide & Conquer

If your code is too slow or your dataset too large, try splitting the work into smaller, independent
chunks and combining the results. Such a “divide and conquer” approach is used in many
algorithms, like the merge sort algorithm, and in big data frameworks like MapReduce.

Example: MapReduce

MapReduce [6] was one of the }rst frameworks developed to work with ‘big data’ that does not }t on
a single computer anymore. The data is split into chunks and distributed across multiple machines,
where each chunk is processed in parallel (map step), and then the results are combined into the }nal
output (reduce step).

For instance, if you want to train a machine learning model on a very large dataset, you could train
separate models on subsets of the data and then aggregate their predictions (e.g., by averaging them),
thereby creating an ensemble model.

Replace For-Loops with Map/Filter/Reduce

Sequential for loops can often be replaced with map, filter, and reduce operations for better
readability and potential parallelism:

• map: Transform each element in a sequence.
• filter: Keep elements that meet a condition.
• reduce: Aggregate elements recursively (e.g., summing values).

For example:
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from functools import reduce

### Simplify this loop:
result_sum = 0
result_max = -float('inf')
for i in range(10000):

new_i = i**0.5
# the modulo operator x % y gives the remainder when diving x by y
# i.e., we're checking for even numbers, where the rest is == 0
if (round(new_i) % 2) == 0:

result_sum += new_i
result_max = max(result_max, new_i)

### Using map/filter/reduce:
# map(function to apply, list of elements)
new_i_all = map(lambda x: x**0.5, range(10000))
# filter(function that returns true or false, list of elements)
new_i_filtered = filter(lambda x: (round(x) % 2) == 0, new_i_all)
# reduce(function to combine current result with next element, list of elements, initial value)
result_sum = reduce(lambda acc, x: acc + x, new_i_filtered, 0)
result_max = reduce(lambda acc, x: max(acc, x), new_i_filtered, -float('inf'))
# (of course, for these simple cases you could just use sum() and max() on the list directly)

In Python, list comprehensions also ozer concise alternatives:

new_i_filtered = [i**0.5 for i in range(10000) if (round(i**0.5) % 2) == 0]

Exploit Parallelism

Many scienti}c computations are “embarrassingly parallelizable,” meaning tasks can run indepen-
dently. For example, running simulations with dizerent model con}gurations, initial conditions, or
random seeds. Each of these experiments can be submitted as a separate job and run in parallel on
a compute cluster. By identifying parts of your code that can be parallelized, you can save time and
make full use of available resources.

5.6. Refactoring: Make Change Easy

Refactoring is the process of modifying existing code without altering its external behavior
[10]. In other words, it preserves the “contract” (interface) between your code and its users while
improving its internal structure.
Common refactoring tasks include:

• Renaming: Giving (internally used) variables, functions, or classes more meaningful and de-
scriptive names.
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• Extracting Functions: Breaking large functions into smaller, more focused ones (with a single
responsibility).

• Eliminating Duplication: Consolidating repeated code into reusable functions (DRY princi-
ple).

• Simplifying Logic: Reducing deeply nested code structures or introducing guard clauses for
clarity.

• Reorganizing Code: Grouping related functions or classes into appropriate }les or modules.

Why refactor?

Refactoring is typically done for two main reasons:

1. Addressing Technical Debt:
When code is written quickly—often to meet deadlines—it may include shortcuts that make
future changes harder. This accumulation of compromises is called “technical debt.” Refactoring
cleans up this debt, improving code quality and making the code easier to understand.

• Example: Revisiting old code can be like tidying up a messy campsite. Just as a good
scout leaves the campground cleaner than they found it, a responsible developer leaves the
codebase better for the next person (or themselves in the future).

2. Making Change Easier:
Sometimes, implementing a new feature in your existing code feels like forcing a square peg into
a round hole. Instead of struggling with awkward workarounds, you should }rst refactor your
code to align with the new requirements. The goal of software design isn’t to predict every
possible future change (which is impossible) but to adapt gracefully when those changes arise.
This promotes an evolutionary architecture, where you solve problems once you understand them
better [8].

• Before adding a new feature, clean up your code so that the change feels natural and
seamless. This not only simpli}es the task at hand but also results in a more general,
reusable functions and classes.

Tips when refactoring

• Test as you refactor: Always run tests before and after refactoring to ensure no func-
tionality is accidentally broken. Writing or expanding automated tests is often part of the
process to safeguard against regressions.

• Leverage IDE support: Modern IDEs like PyCharm or Visual Studio Code provide tools
for automated refactoring, such as renaming, extracting functions, or moving }les. These
can save time and reduce errors.

• Avoid over-refactoring: While cleaning up code is valuable, avoid making unnecessary
changes that don’t improve functionality or clarity. Over-refactoring wastes time and can
confuse collaborators.
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Refactorings to simplify changes

For each desired change, make the change easy (warning: this may be hard), then make
the easy change.
– Kent Beck4

• Replace Magic Numbers with Constants: Magic numbers—values with unclear meaning—
can make code harder to understand and maintain. By replacing them with constants, you
create a single source of truth that’s easy to modify.
# before:
if status == 404:

...

# after:
ERROR_NOT_FOUND = 404
if status == ERROR_NOT_FOUND:

...

You can also use enumerations to specify a set of related constants. Enums can be especially
helpful to make a function’s interface explicit. For example, by specifying that an input
argument should be an HTTPStatus, users of the function know that they can’t just pass any
arbitrary integer:
from enum import Enum

class HTTPStatus(Enum):
OK = 200
CREATED = 201
FORBIDDEN = 403
NOT_FOUND = 404
INTERNAL_SERVER_ERROR = 500
SERVICE_UNAVAILABLE = 503

def get_status_message(status_code: HTTPStatus):
"""Returns the HTTP status message for a given HTTPStatus enum value."""
return f"{status_code.name.replace('_', ' ').title()} ({status_code.value})"

if __name__ == "__main__":
print(get_status_message(HTTPStatus.OK)) # Output: Ok (200)
print(get_status_message(HTTPStatus.NOT_FOUND)) # Output: Not Found (404)

• Don’t Repeat Yourself (DRY): Copying and pasting code may seem like a quick }x, but it
leads to problems later. If the logic changes, you’ll need to update it everywhere it’s duplicated,
which is error-prone. Instead, move the logic into a reusable function or method.
# before:
if (model.a > 5) and (model.b == 3) and (model.c < 8):

4https://x.com/KentBeck/status/250733358307500032
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...

# after:
class MyModel:

def is_ready(self):
return (self.a > 5) and (self.b == 3) and (self.c < 8)

if model.is_ready():
...

• Implement Wrappers: When working with external libraries or APIs, their provided interface
might not align with your needs, and adapting to it directly can lead to awkward implementations
in your code. A better solution is to create a wrapper that implements the interface you wish
you had, translating the external API’s inputs and outputs into the format that best suits
your implementation. This approach keeps your code clean, consistent, and easier to maintain,
while con}ning the less-than-ideal API interactions to a single location. Plus, if the external API
changes, you only need to update the wrapper instead of changing your code everywhere—which
is why these wrappers are also called anti-corruption layers.

• Use Alternative Constructors: Similar to a wrapper, you can add a class method to create
objects in a way that’s dizerent from the regular constructor. This is useful when the input
data doesn’t directly match what the constructor needs. For instance, imagine you have a
con}guration }le that speci}es settings for a simulation. If the names or structure of these
settings don’t match the constructor’s parameters, you can create a from_config method to
handle the translation and then call the constructor with the correct arguments. The advantage
is that if the format of the con}guration }le changes in the future, you only need to update this
one method, keeping the rest of your code the same.
class Date:

def __init__(self, year, month, day):
self.year = year
self.month = month
self.day = day

@classmethod
def from_str(cls, date_str):

# parse the string and create a new instance
year, month, day = map(int, date_str.split('-'))
return cls(year, month, day)

# usage:
date1 = Date(2025, 01, 30)
date2 = Date.from_str("2025-01-30")

• Organize for Cohesion: Keep code elements that need to change together in the same }le or
module. Conversely, separate unrelated parts of your code to prevent unnecessary entanglement.
This way, changes are localized, which reduces cognitive load.

In larger codebases shared by multiple teams, this is even more critical. When changes require
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excessive communication and coordination between teams, it signals a need to reor-
ganize the code. Clear ownership and reduced dependencies help teams work independently
by making sure the system loosely coupled through agreed upon interfaces.

Large-scale Refactoring

While smaller portions of code are often tidied up as you go [2], larger refactorings that span multiple
}les or repositories require more upfront planning [21][22][23].

The following steps will help keep larger refactorings on track and ensure they deliver real improve-
ments:

1. Identify the problems this refactoring should address.

Don’t refactor just because the code is ugly—refactor because it’s causing problems. For
example, the current structure may make it di{cult to implement important new features or
maintain the code e{ciently. List all the problems the code creates and rank them by
severity to ensure your refactoring tackles the most critical issues.

2. Envision the ideal state.

Code can become suboptimal for many reasons. Maybe a looming deadline forced developers to
take shortcuts, leading to technical debt. Maybe an inexperienced developer made a design
choice that no longer }ts. But most likely, the requirements have evolved since the code
was written, making what was once a good solution no longer suitable.

Try to break free from the existing structure and its limitations. If you were designing the
system from scratch today, given everything you now know about current and future
requirements, what would you build? What should the code look like once refactored?

3. Verify that the ideal state solves the most important issues.

Revisit your list of problems and ensure that your envisioned ideal state actually addresses
them. If necessary, iterate on your vision until you have a solution that tackles the most
critical challenges. This gives you a better understanding of which changes to the codebase are
actually necessary to achieve your goal.

4. Make a realistic plan to get closer to your ideal state.

While it might be tempting to rewrite everything from scratch, this is rarely practical. A
complete rewrite would likely take longer than expected and introduce new, unforeseen issues,
as the existing code likely accounts for edge cases and hidden requirements you’ve forgotten.

Instead, translate your ideal state into small, targeted changes to the existing codebase
that still provide signi}cant bene}ts. Ideally, each change should:

• Be independent of the others, allowing for incremental progress.
• Deliver some immediate value on its own.

Create a prioritized list of independent changes, considering both:

• Impact: Which of the original problems does this change solve?
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• Ezort: How di{cult would this be to implement? What dependencies or additional steps
are required (e.g., database migrations, external system changes, or involvement from other
teams)?

To accurately assess ezort, detail your plan—outline which }les and functions will be
azected and identify any external dependencies. Once you’ve evaluated impact vs. ezort,
decide which changes are essential, which are nice-to-have, and which might not be worth
the ezort, while taking into account that some steps might depend on the successful completion
of other changes.

5. Get feedback on your plan.

If possible, discuss your plan with collaborators and stakeholders—especially those af-
fected by the changes. They might catch overlooked dependencies or identify potential
blockers before you run into them during implementation.

6. Execute incrementally and merge frequently.

Instead of implementing all changes at once, work step by step, merging updates back
into the codebase as quickly as possible. This minimizes risk, ensures early testing
and validation, and helps maintain motivation—since every small change delivers immediate
value.

By refactoring regularly and following these practices, you’ll create a cleaner, more maintainable
codebase that is adaptable to future needs and enjoyable to work with.

Before you continue

At this point, you should have a clear understanding of:

• How to transform your concept into code.
• Some best practices to write code that is easy to understand and maintain.
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Your results look great, the paper is written, the conference talk is over—now you’re done, right?!
Well, in academia, you might be. But in industry, this is often just the beginning.

In this chapter, we explore some concepts and tools that can elevate your code to the next level: the
additional components required to build a full-~edged software product that users can interact with,
as well as some strategies for deploying your code and delivering it to your end users (Figure 6.1).

Figure 6.1.: Unlike a script that runs locally on your laptop, a production-grade software application—
such as a mobile app or a cloud-based web service—requires your code to be packaged and
deployed within a runtime environment. The user can then interact with the software by
providing inputs (like clicking a button) and receiving outputs (like seeing a new webpage).

Who knows—maybe you’ll even be inspired to turn your project into a deployable app, which could
become a great showcase in your next job application.

6.1. Components of Software Products

So far, your code might consist of scripts or notebooks with analyses and a set of reusable helper
functions in your personal library. The next step? Making your code accessible to others by turning
it into standalone software with a graphical user interface (GUI). Additionally, we’ll explore how to
expand beyond static data sources like CSV or Excel }les.

Graphical User Interface (GUI)

Software shines when users can interact with it easily. Instead of using a command-line interface
(CLI), these days, users expect intuitive GUIs with buttons and visual elements.

We can broadly categorize software programs into:

1. Stand-alone desktop or mobile applications, which users download and install on their
devices.
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2. Web-based applications that run in a browser, like Google Docs. These are increasingly
popular thanks to widespread internet access.

For web apps, the GUI that users interact with is also referred to as the frontend, while the back-
end handles behind-the-scenes tasks like data storage and processing. Even seemingly standalone
desktop clients often connect to a backend server for cloud storage or to enable collaboration on
shared documents. We’ll explore how this works in the section on APIs.

In research, the goal is often to make results more accessible, for example, by transforming a static
report into an interactive dashboard where users can explore data. To do this, we recommend you
start with a web-based app.

Many books and tutorials are written on the topic of building user-friendly software applications and
a lot of it is very speci}c to the programming language and framework you’re using—please consult
your favorite search engine to discover more resources on this topic. �

Web apps in Python

If you use Python, try the Streamlit framework to turn your analysis scripts into a web app with
just a few additional lines of code. To create more advanced web apps, you can also check out
the Re~ex framework.

Databases

So far, we’ve assumed that your data is stored in spreadsheets (like CSV or Excel }les) on your
computer. While this works for smaller datasets and simple work~ows, it becomes less practical as
your data grows or is generated dynamically, such as through user interactions, and needs to be
accessed and updated by multiple people at the same time. This is where databases come in, ozering
a more e{cient and scalable way to store, retrieve, and manage data [19].

Databases come in many forms, each suited to dizerent types of data and use cases. Two key consid-
erations when choosing a database are [28]:

1. the kind of data you need to store, and
2. how that data will be used.

Types of Data in Databases

Dizerent kinds of databases are ideal for dizerent types of data (see also Section 2.2):

• Structured data: This resembles spreadsheet data, with rows for records and columns for
attributes. Structured data is typically stored in relational (SQL) databases, where data is
organized into multiple interrelated tables. Each table has a schema—a strict de}nition of the
}elds it contains and their types, such as text or numbers. If data doesn’t match the schema,
it’s rejected.
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Normalization in relational databases

A process called normalization reduces redundancy by splitting data into separate
tables. For example, instead of storing material_type, material_supplier, and
material_quality directly in a table of samples, you’d create a materials table with a
unique ID for each material, then reference the material_id in the samples table. This
avoids duplication and makes updates easier but requires more complex queries to combine
tables and extract all the data needed for analysis.

• Semi-structured data: JSON or XML documents contain data in ~exible key-value pairs and
are often stored in NoSQL databases. Unlike SQL databases, these databases don’t enforce a
strict schema, which makes them ideal for handling complex, nested data structures or dynami-
cally changing datasets. For example, APIs often exchange data in JSON format, which can be
stored as-is to avoid breaking it into tables and reconstructing it later.
Modern relational databases, such as Postgres, blur the line between structured and semi-
structured data by supporting JSON columns alongside traditional tables.

• Unstructured data: Files like images, videos, and text documents are typically stored on disk.
Data lakes (e.g., AWS S3) provide additional tools to manage these }les, but fundamentally, this
is similar to organizing }les in folders on your computer. If your data is processed through a
pipeline, it’s often a good idea to save copies of the }les at each stage (e.g., in raw/ and cleaned/
folders).

• Streaming data: High-volume, real-time data (e.g., IoT sensor logs) is best managed in spe-
cialized databases optimized for streaming, such as Apache Kafka.

Use Cases for Databases

When choosing a database, you’ll also want to consider how the data will be used later:

• Transactional processing (OLTP): In this use case, individual records are frequently cre-
ated and retrieved (e.g., }nancial transactions). These systems prioritize fast write speeds and
maintaining an up-to-date view of the data.

• Batch analytics (OLAP): Data analysis is often performed in large batches to generate re-
ports or insights, such as identifying which products users purchased last month. To avoid
overloading the operational database with complex queries, data is typically copied from trans-
actional systems into analytical systems (e.g., data warehouses) using an ETL process (Extract-
Transform-Load).

• Real-time analytics: For applications requiring live data (e.g., interactive dashboards),
databases and frameworks optimized for streaming or in-memory processing (e.g., Apache Flink)
are ideal.

Scaling your database system is another critical factor. Consider how many users will access it simul-
taneously, how much data they’ll retrieve, and how often it will be updated.
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CRUD Operations

Databases support four basic operations collectively called CRUD:

• Create: Add new records.
• Read: Retrieve data.
• Update: Modify existing records.
• Delete: Remove records.

These operations are performed using queries, often written in SQL (Structured Query Language).
For example, SELECT * FROM table; retrieves all records from a table. If you’re new to SQL, this
tutorial is a great place to start.

ORMs and Database Migrations

Writing raw database queries can be tedious, especially when working with complex schemas. Object-
Relational Mappers (ORMs) simplify this by mapping database tables to objects in your code. With
ORMs, you can interact with your database using familiar programming constructs and even de}ne
the schema directly in your code.

When designing a database schema and implementing the corresponding ORMs, it’s helpful to }rst
sketch out the structure of the data (Figure 6.2). Start by identifying the key objects (which map to
database tables), their }elds, and their relationships.

Figure 6.2.: The classes User, Order, Product, and Category are mapped to the corresponding tables
users, orders, products, and categories. Every record in a table is uniquely identi}ed
by a primary key, often named id. Fields in a table can either store data directly (e.g.,
text or boolean values) or reference records in another table, establishing relationships
between tables. These relationships are de}ned using foreign keys, which store the
primary key of a related record. For example, an Order references a single User ID
(indicating the user who placed the order) and multiple Product IDs (the items included
in the order).
Relationships between tables can be bidirectional or unidirectional, depending on the
use case. For instance, when querying a Product, we want to list all the categories it
belongs to, and vice versa. In contrast, the relationship between Order and Product only
goes one way: when retrieving an Order, we want to know which products are included,
but querying a Product doesn’t usually require listing all the orders it appears in.

Database migrations, or schema changes, often require careful coordination between code and
database updates. For instance, renaming a }eld means you have to update your database and modify
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the code accessing it at the same time. Keeping migration scripts and application code (including
ORMs) in the same repository helps ensure consistency during such updates.

Managing databases in Python

The SQLModel library is highly recommended when working with relational databases in Python
and also includes a great tutorial to learn more about ORMs and databases in general. For
database migrations, check out Alembic.

APIs

In contrast to a user interface, through which a human interacts with a program, an Application
Programming Interface (API) enables software components to communicate with one another.
Think of it as a contract that de}nes how dizerent systems interact. For example, an API might
specify the classes and functions a library provides so developers can integrate it ezectively.

APIs are often associated with Web APIs, which provide functionality over the internet. These
can either be external services, like the Google Maps API for retrieving directions, or a custom-built
backend that serves as an abstraction layer for a database. This abstraction is useful because it
can combine data, enforce rules (e.g., verifying user permissions), and maintain a consistent interface
even when the database structure changes.

Interacting with APIs

Web APIs typically use four HTTP methods that correspond to the CRUD (Create, Read, Update,
Delete) operations in databases:

• GET: Retrieves data, most commonly used when accessing websites. You can include additional
parameters by appending a ? to the URL. For example, https://www.google.com/search?q=web+api
searches for “web api” using the query parameter q. To pass multiple parameters, separate
them with &.

• POST: Sends data to create a new record, often as a JSON object, for example, when submitting
a form.

• PUT: Updates an existing record.
• DELETE: Removes a record.

You typically interact with APIs through a website’s frontend, which triggers these API calls in
the background. However, APIs can also be queried directly to access raw data, usually returned in
JSON format.

API keys and authentication

Many APIs require an API key to access their functionality. This key serves as an identi}er,
allowing the API to authenticate users, track usage, and apply rate limits to prevent abuse.
Always keep your API keys secure and avoid exposing them in public repositories or client-side
code.
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There are many free public APIs you can explore. As an example, we’ll use The Cat API to demon-
strate how to interact with an API.

You can perform a GET request directly in your web browser. For instance, by visiting
https://api.thecatapi.com/v1/images/search?limit=10, you’ll receive a JSON response
containing a list of 10 random cat image URLs along with additional details like the image IDs.

For more advanced requests, such as POST, you’ll need specialized tools. Popular GUI clients include
Postman, Insomnia, and Bruno. If you prefer command-line tools, curl is a powerful option. Alterna-
tively, you can interact with APIs programmatically using your preferred programming language and
relevant libraries.

Interacting with APIs programmatically

In the examples below, we use curl and Python to interact with The Cat API to retrieve the
latest votes for cat images with a GET request and submit a new vote using a POST request.
Using curl
Ensure curl is installed by running which curl in a terminal—this should return a valid path
to your installation.

# GET request to view the last 10 votes for cat images
curl "https://api.thecatapi.com/v1/votes?limit=10&order=DESC" \
-H "x-api-key: DEMO-API-KEY"

# POST request to submit a new vote
# the payload after -d is the JSON object submitted to the API
curl -X POST "https://api.thecatapi.com/v1/votes" \
-H "Content-Type: application/json" \
-H "x-api-key: DEMO-API-KEY" \
-d '{
"image_id": "HT902S6ra",
"sub_id": "my-user-1234",
"value": 1

}'
# now run the GET request again to see your new vote

Using Python
Python’s requests library is great for working with APIs.
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import requests

BASE_URL = "https://api.thecatapi.com/v1/votes"
API_KEY = "DEMO-API-KEY"

# GET request to fetch the last 10 votes
def get_last_votes():

response = requests.get(
BASE_URL,
headers={"x-api-key": API_KEY},
params={"limit": 10, "order": "DESC"}

)
if response.status_code == 200:

print(response.json())
else:

print(f"Error: {response.status_code}")

# POST request to submit a new vote
def submit_vote(image_id, sub_id, value):

data = {"image_id": image_id, "sub_id": sub_id, "value": value}
response = requests.post(

BASE_URL,
headers={"Content-Type": "application/json", "x-api-key": API_KEY},
json=data

)
if response.status_code == 201:

print("Vote submitted!")
else:

print(f"Error: {response.status_code}")

if __name__ == '__main__':
get_last_votes()
submit_vote("HT902S6ra", "my-user-1234", 1)

Implementing APIs

When designing an API, speci}cally a REST (REpresentational State Transfer) API, it’s important to
understand the concept of an endpoint. An endpoint is a speci}c URL in your API where a resource
can be accessed or modi}ed. For example, if you’re building a photo-sharing app, an endpoint like
/images might allow users to view or upload images. Endpoints should be named using descriptive,
plural nouns (e.g., /users, /images) to clearly represent the resources being accessed. It’s also best
practice to avoid including verbs in endpoint names (e.g., /get_users), since the HTTP method (like
GET or POST) already speci}es the action being taken, such as retrieving or creating data.

Another key design principle is statelessness. Similar to the concept of pure functions, this means
that each API request should contain all the information needed to complete the action, like user

93



6. From Research to Production

authentication tokens. This way, the server doesn’t need to remember anything about previous re-
quests, making the API easier to scale. This is especially important in cloud-based environments
where multiple requests from the same user may be routed to dizerent servers [5].
Data that needs to be persisted can be stored either in the frontend (client) or a central database in the
backend (server), depending on its purpose. Temporary data, like a shopping cart, can be maintained
on the user’s machine using cookies or local storage. Permanent data, such as a purchase order, is best
stored in the backend database to ensure long-term accessibility. This approach supports stateless
APIs, as the backend server doesn’t need to keep the session state in memory. Instead, all necessary
data is either included in the request or can be fetched from the database, allowing each request to
be processed independently.

Implementing APIs in Python with FastAPI

FastAPI is a Python framework that makes building APIs straightforward. With just a few
lines of code, you can turn a function into an endpoint that validates input and returns a JSON
response. It’s beginner-friendly and highly performant.

Communicating with a Server: Use Cases

Code that runs on our local devices (like your laptop or smartphone) is often limited by the
available hardware. For example, if you play a chess game on your phone against a bot, this bot
will only have limited capabilities since the processor on your phone is not su{cient to run an advanced
AI model (Figure 6.3).

Figure 6.3.: The user interacts only with their device to play chess against a simple bot locally on their
phone. The small database icon next to the phone symbolizes the local storage on your
phone, where the current game state is saved after each move in case the app is closed so
that you can retrieve this saved state the next time you open the app and continue with
the game.

A server in the cloud, on the other hand, has the necessary hardware (in this case multiple
GPUs) to run an advanced AI-based chess bot (Figure 6.4). However, to play against this more
challenging opponent, you need to have internet access to be able to submit your current game state
to the server and receive the next bot move as a response. This also means that you can’t play the
game in case your internet connection is not su{cient or the server is down.

Figure 6.4.: The user interacts with their device and data is submitted to and received from a server
in the cloud hosting an advanced AI to determine the next bot move.
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Finally, by communicating with a server we can also play against other human players
(Figure 6.5). For this, both players take turns in submitting and receiving their next moves to the
server. Since the chess API may run on multiple server nodes to handle a high load of requests, it
can’t be guaranteed that both players will interact with the same node, i.e., we need a stateless design.
To accomplish this, the server persists and retrieves data in a central database that can be accessed
by all nodes.1

Figure 6.5.: Player 1 interacts with their device and data about the next move is submitted to a
server node, where it is stored in a central database. The device from player 2 requests
an update from a dizerent server node, which accesses the same database to retrieve the
move submitted by player 1.

Asynchronous Communication

When your script calls a library function or API and waits for it to return before continuing with the
rest of the code, this is an example of synchronous communication. It’s similar to a conversation
where one person speaks and then waits and listens while the other person responds.

In contrast, asynchronous (async) communication allows the program to keep running while
waiting for a response. Once the response arrives, it is processed and integrated into the work~ow,
but until then the code just continues without it. Just like when you send an email to someone asking
for some data and they send you the results a few hours later.
For example, a website might fetch data from multiple APIs, showing placeholders until the responses
arrive. This approach improves the user experience because it keeps the user interface (UI) responsive
and enables faster loading by processing multiple tasks in parallel.

Event-Driven Architecture

For most applications, communicating directly with external services—whether synchronously or
async—is the right approach, because eventually the requested data is needed to }nish the origi-
nal task. But there are also use cases where it’s enough that your message was received and you don’t
need to wait for a response. For example, when placing an order in an online shop, users only care

1This use case could also be implemented using an event-driven architecture as discussed in the next section. With this
setup, both players would publish their next moves to a message queue and subscribe to it to receive updates about
the moves of their opponent.
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that the order was submitted successfully. They don’t wait in front of the screen until it was packaged
and shipped—which could take days. An email noti}cation can inform them of progress later.

Such a scenario calls for an event-driven architecture, which takes async communication to the
extreme. Here, multiple services can operate independently by exchanging information via events using
a message queue (MQ), a system that temporarily stores event messages like JSON documents.
These messages act as instructions, containing all relevant details about an event, such as a user’s
order information. Publishers (senders) create events, and subscribers (receivers) process them based
on their type, such as Order Submitted.

An event-driven architecture ozers several advantages. By decoupling components, it allows publish-
ers and subscribers to run independently, even in dizerent programming languages or environments.
This makes it easier to scale systems and assign teams to own speci}c components without needing to
understand the full system. Additionally, one event can trigger multiple actions. For instance, when
an order is packed, one system might update the user database while another generates a shipping
label. This approach thereby simpli}es the propagation of data to multiple services and can also
facilitate replication of live data to testing and staging environments.

However, this type of architecture also brings with it some challenges. Since no single component has
a full view of the system, tracking the state of a speci}c task, such as whether an order is still waiting
or in progress, can be di{cult. Furthermore, while MQs often guarantee that each message is handled
at least once, the system requires careful design in case a message is processed multiple times. For
example, if a subscriber crashes after processing a message but before con}rming its completion, the
MQ might reassign the task to another instance, potentially leading to duplicate processing. For these
reasons, event-driven architectures should only be used when direct communication between services
is not an option [27].

Batch Jobs

Unlike continuously running services such as web APIs, batch jobs are scripts or work~ows used
to process accumulated data in one go. They are particularly ezective when tasks don’t require
immediate processing or when grouping tasks can improve e{ciency. To automate recurring tasks,
batch work~ows can be scheduled at speci}c intervals using tools like cron jobs.2

Examples of scenarios where batch jobs are useful include:

• Fetching new messages from a queue every 10 minutes to process them in bulk, reducing overhead.
• Generating a sales report for the marketing department every Monday at midnight.
• Running nightly data validation to check for data drift or anomalous patterns.
• Retraining a machine learning model every week using newly collected data to create updated

recommendations, like Spotify’s “Discover Weekly” playlist [15].

For large-scale jobs, distributed systems might be necessary to ensure they complete within an accept-
able timeframe.

2Tools like Crontab Guru can help con}gure these schedules.
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Software Design Revisited

As your software evolves beyond a simple script, it becomes a system composed of multiple intercon-
nected components. Each component can be viewed as a subsystem with its own de}ned boundaries
and interface, responsible for speci}c functionalities while interacting with other parts of the system.

To manage this growing complexity, it’s best to think of these components—such as a
GUI/client/frontend, API/server/backend, and data storage (}les, databases, message
queues)—as distinct layers. A clean design follows the principle of layered communication, where
each layer interacts only with the layer directly below it [22]. For example, the client communicates
with the server, and the server interacts with the database, avoiding “skip connections” where one
layer bypasses another.
This design principle minimizes dependencies and makes the system easier to maintain: If the
interface of one component changes, only the layer directly above it has to be adapted, for example,
if a }eld in the database is renamed, only the API needs to be updated.

When you design these more complicated systems, it’s even more important to sketch the overall
architecture before you start with the implementation (Figure 6.6). Visualizing how the layers interact
can reveal potential bottlenecks or unnecessary complexity and gives you and your collaborators clarity
on the big picture.

Begin by visualizing the ~ow from the user’s perspective, focusing on how they interact with
the client to complete their intended task. Once the user experience is clear, continue with the
server and database layers and map out how these can support and implement each step:

• What data is needed to render the GUI?
• What data needs to be persisted in the database for later?

Finally, in accordance with the read and write (CRUD) operations on the database, you can design
the ORMs used to represent and store the required data (Figure 6.2).

Domain-Driven Design

As a software product grows, it eventually becomes too complex for a single team to manage. To reduce
cognitive load and improve maintainability, the system should be broken into smaller subsystems,
each of which can be owned and managed autonomously by a dedicated team.

To minimize inter-team dependencies and reduce communication overhead, it’s best to split the system
along domain or use-case boundaries [18][23]. For example, in an e-commerce platform, one team
might own the “search & browse” domain, while another handles “purchasing.” Although implementing
a new feature may involve both client and server changes, those changes typically stay within a single
domain, allowing the responsible team to implement them independently.

Technically, this often means breaking a monolith into domain-based microservices [23], where
each service operates independently (which also means it needs its own database). The key challenge
is balancing local vs. global complexity: Each microservice should be small enough to be fully
understood and maintained by one team, but large enough to encapsulate meaningful logic. If
services are too granular, they require excessive inter-service communication to get anything done,
leading to tightly coupled systems, only now with the added complexity of a distributed system and
multiple deployments.
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Figure 6.6.: A simpli}ed ~ow showing what happens when a user orders something online: the user
opens a product page, which triggers a request to the API to fetch the corresponding
product details from the database (DB). The user then clicks the “add to cart” button,
which places the product into the shopping cart (in local storage managed by the client).
The user then views the shopping cart and clicks “purchase”, which triggers a POST
request to the API, submitting the user’s cart contents. The API creates a new record
in the orders table to store the purchase details and submits an Order event to the
message queue (MQ), thereby alerting other services that a new order needs to be packed
and shipped. The endpoint returns with the status code 201 (“success”) and the client
redirects the user to a page that tells them the purchase was successful, at which point
the user closes the tab.
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6.2. Delivery & Deployment

Modern software development requires reliable and e{cient processes to build, test, and deploy ap-
plications [9]. Delivery and deployment strategies ensure that new features and updates are released
quickly, safely, and at scale, minimizing disruptions to users while maintaining quality.

CI/CD Pipelines: Automating Development Cycles

Continuous Integration (CI) and Continuous Delivery/Deployment (CD) pipelines are the
backbone of modern software practices. CI focuses on automating the process of integrating code
changes into a shared repository. Every change triggers automated tests to ensure that the new code
works harmoniously with the existing codebase. CD extends this by automating the preparation or
deployment of changes into production, either ready for manual approval (Continuous Delivery) or
fully automated (Continuous Deployment). This drastically reduces manual ezort, minimizes human
error, and enables faster iteration cycles.

CI/CD pipelines are either included directly into version control platforms, such as GitHub Actions
and GitLab CI/CD, or can be run using external tools like Jenkins or CircleCI.

Optimizing CI/CD Pipelines

To enhance pipeline e{ciency and reliability, consider the following practices:

• Dependency Caching: Cache dependencies to reduce the time spent downloading and in-
stalling them for each build.

• Selective Testing: Run only the tests azected by recent changes to speed up feedback.
• Real-Time Noti}cations: Notify developers immediately when a pipeline fails, enabling faster

issue resolution.

Security in CI/CD pipelines

Security must be a priority in any CI/CD process. For example, it is best practice to include
a dependency scanning step to detect vulnerabilities in third-party libraries. Furthermore,
you should never include sensitive information—such as API tokens, database credentials,
or private keys—directly in your code. However, because CI jobs often require access to this
information, you can securely store secrets using dedicated CI/CD variables or external secret
management tools like HashiCorp Vault or AWS Secrets Manager.

A well-designed CI/CD pipeline not only saves time and resources but also ensures a consistent and
high-quality delivery of software.
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Containers in the Cloud

Containers, powered by tools like Docker, encapsulate applications with their dependencies, en-
suring consistency across dizerent environments. This portability simpli}es deployment and reduces
issues caused by environment dizerences.

For managing containerized applications at scale, Kubernetes (k8s) is the industry standard. Ku-
bernetes automates the orchestration of containers, providing features like:

• Auto-scaling: Adjust resources dynamically based on workload.
• Self-healing: Automatically restart failed containers.
• Load Balancing: Distribute tra{c e{ciently across services.

Using Cloud Platforms

Cloud platforms like AWS, Google Cloud Platform (GCP), and Microsoft Azure ozer robust
infrastructures for deploying and scaling applications. For simpler work~ows, managed services like
Render or Heroku abstract away much of the operational complexity.

Managing costs ezectively is critical in cloud deployments. Key strategies include:

• Resource Scaling: Reduce unused resources during oz-peak hours.
• Serverless Computing: Use serverless models, like AWS Lambda, for infrequent workloads

to save costs.
• Cost Monitoring Tools: Leverage AWS Cost Explorer or GCP Billing to track and optimize

spending.

Infrastructure as Code (IaC)

Instead of con}guring your cloud setup manually through the platform’s GUI, it is highly recommended
to use Infrastructure as Code tools like Terraform and AWS CloudFormation to manage cloud
infrastructure programmatically. The IaC con}guration }les can then be version-controlled, which
ensures:

• Reproducible setups for consistent environments.
• Easier onboarding for new team members.
• Reduced risk of con}guration drift.

Testing and Staging Environments

Deploying changes directly to production is risky. To ensure stability:

• Use staging environments that mimic production to validate changes before release.
• Maintain testing environments for early experimentation and debugging.

Techniques like A/B testing and feature toggles allow gradual rollouts or controlled exposure of
new features, minimizing user disruption. This can be achieved using deployment strategies like:
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• Blue-Green Deployments: Maintain two environments (blue and green) and switch tra{c
between them for A/B tests or to reduce downtime during updates.

• Canary Releases: Gradually expose updates to a small group of users, monitoring for issues
before full deployment.

Scaling Considerations

As applications grow, scaling requires thoughtful architectural design. You should consider:

• Task Separation: For example, train machine learning models periodically as batch jobs, while
keeping prediction services running continuously. This is particularly important when services
have vastly dizerent user bases (e.g., hundreds of admins versus millions of regular users), as
they require varying replication rates for horizontal scaling. Especially if services rely on distinct
dependencies, combining them into a single Docker container can result in a large, ine{cient
image, which increases the services’ startup time.

• Team Autonomy: Design services such that teams can own and work on individual components
independently, thereby reducing communication overhead and speeding up development cycles
[29].

Monitoring and Observability

To ensure smooth operation and detect issues proactively, monitoring and observability are essential.
Focus on:

• System Performance: Monitor the “golden signals”—latency, tra{c, errors, and saturation
of your services. Tools like Prometheus and Grafana are commonly used for this.

• Data Quality: Track changes in input data distributions and monitor metrics like model
accuracy to detect data drift.

• Synthetic Monitoring: Simulate user behavior to identify bottlenecks and improve respon-
siveness. Complement this with chaos engineering tools like Chaos Monkey to test your
system’s resilience by deliberately introducing failures, ensuring your infrastructure can handle
unexpected disruptions ezectively.

• Distributed Tracing: Debug across microservices using tools like Jaeger or OpenTelemetry.

When issues arise, having a rollback strategy is crucial. Options include:

• Reverting to a stable container image.
• Rolling back database migrations.
• Using feature toggles to disable problematic updates.

By combining robust delivery pipelines, thoughtful architecture, and ezective monitoring, teams can
ensure that their applications remain reliable, scalable, and adaptable to changing needs.

Before you continue

At this point, you should have a clear understanding of:
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• Which additional steps you could take to make your research project production-ready.
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Afterword

You’re still at the beginning of your journey towards professional software engineering. But I hope
this book could give you a glimpse into what lies ahead.

If you want to learn more, I recommend these for your next read:

• [31] The Pragmatic Programmer: Your Journey to Mastery by David Thomas and Andrew Hunt
(20th Anniversary Edition, 2019) – This book expands on many of the coding principles we’ve
touched on, ozering practical advice for succeeding as a programmer in industry.

• [30] The Algorithm Design Manual by Steven Skiena (2020) – A deep dive into algorithms and
data structures to sharpen your algorithmic thinking skills.

Finally, I’m always looking to improve the contents of this book (or any other resources you can }nd
on my website). Therefore, I would be eternally grateful for your feedback—whether you just
found a typo, you think an explanation is unclear, or there are other topics that you think this book
should cover—please send me an email to hey@franziskahorn.de and let me know what you think!
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